
Beyond Worst-case Analysis of
Multicore Caching Strategies

APOCS 2021
Helen XuShahin Kamali

1

 Introduction
Caching for multicore architectures has been well-studied in practice [FSS06,
QJPSE07, SRD04], but our theoretical understanding lags behind.

2

Shared Cache

p p p

 Introduction
Caching for multicore architectures has been well-studied in practice [FSS06,
QJPSE07, SRD04], but our theoretical understanding lags behind.

Multicore caching diverges from classical single-core caching because it has
an added scheduling aspect due to fetch delay [LS12, KX20].

3

Shared Cache

p p p

 Introduction
Caching for multicore architectures has been well-studied in practice [FSS06,
QJPSE07, SRD04], but our theoretical understanding lags behind.

Multicore caching diverges from classical single-core caching because it has
an added scheduling aspect due to fetch delay [LS12, KX20].

Furthest-In-Future (FIF) is the optimal algorithm [B66] and

Least-Recently-Used (LRU) is k-competitive (where k is the size of the

cache) [ST85] in single-core.

A large class of “lazy algorithms” (including LRU) cannot be
competitive in multicore caching [KX20].

4

Shared Cache

p p p

 Introduction
Caching for multicore architectures has been well-studied in practice [FSS06,
QJPSE07, SRD04], but our theoretical understanding lags behind.

Multicore caching diverges from classical single-core caching because it has
an added scheduling aspect due to fetch delay [LS12, KX20].

Furthest-In-Future (FIF) is the optimal algorithm [B66] and

Least-Recently-Used (LRU) is k-competitive (where k is the size of the

cache) [ST85] in single-core.

A large class of “lazy algorithms” (including LRU) cannot be competitive
in multicore caching [KX20].

5

Shared Cache

p p p

Relaxing Competitive Analysis
Resource augmentation [ST85] relaxes strict worst-case (competitive)
analysis by giving online algorithms additional resources.

In single-core caching, doubling the space makes LRU 2-competitive.
The same result does not hold in multicore [LS12].

In multicore caching, a constant factor in resource augmentation
yields an O(log p)-competitive algorithm (where p is the number of
cores) [ABDKPS20].

6

Shared Cache

p p p

Shared Cache

p p p

OPT Online algorithm

Relaxing Competitive Analysis
Resource augmentation [ST85] relaxes strict worst-case (competitive)
analysis by giving online algorithms additional resources.

In single-core caching, doubling the space makes LRU 2-competitive. The
same result does not hold in multicore [LS12].

In multicore caching, a constant factor in resource augmentation
yields an O(log p)-competitive algorithm (where p is the number of
cores) [ABDKPS20].

7

Shared Cache

p p p

Shared Cache

p p p

OPT Online algorithm

Relaxing Competitive Analysis
Resource augmentation [ST85] relaxes strict worst-case (competitive)
analysis by giving online algorithms additional resources.

In single-core caching, doubling the space makes LRU 2-competitive. The
same result does not hold in multicore [LS12].

In multicore caching, a constant factor in resource augmentation yields an
O(log p)-competitive algorithm (where p is the number of cores) [ABDKPS20].

8

Shared Cache

p p p

Shared Cache

p p p

OPT Online algorithm

Alternative Measures
Many alternative measures have been proposed for single-core caching but
have not been studied in the parallel setting [Y94, Y98, KP00, KPR92, BLN01, BFL05,

BB94].

9

Alternative Measures
Many alternative measures have been proposed for single-core caching but
have not been studied in the parallel setting [Y94, Y98, KP00, KPR92, BLN01, BFL05,

BB94].

Bijective analysis [ADL07, ADL08, AS09, AS13] directly compares online algorithms
and has been used to separate LRU in the single-core setting from other
online algorithms.

10

Alternative Measures
Many alternative measures have been proposed for single-core caching but
have not been studied in the parallel setting [Y94, Y98, KP00, KPR92, BLN01, BFL05,

BB94].

Bijective analysis [ADL07, ADL08, AS09, AS13] directly compares online algorithms
and has been used to separate LRU in the single-core setting from other
online algorithms.

11

Overly pessimistic

Bijective analysis

Competitive analysis

Alternative Measures
Many alternative measures have been proposed for single-core caching but
have not been studied in the parallel setting [Y94, Y98, KP00, KPR92, BLN01, BFL05,

BB94].

Bijective analysis [ADL07, ADL08, AS09, AS13] directly compares online algorithms
and has been used to separate LRU in the single-core setting from other
online algorithms.

12

Compares online
algorithms directlyOverly pessimistic

Bijective analysis

Competitive analysis

Alternative Measures
Many alternative measures have been proposed for single-core caching but
have not been studied in the parallel setting [Y94, Y98, KP00, KPR92, BLN01, BFL05,

BB94].

Bijective analysis [ADL07, ADL08, AS09, AS13] directly compares online algorithms
and has been used to separate LRU in the single-core setting from other
online algorithms.

13

Compares online
algorithms directlyOverly pessimistic

Bijective analysis

Competitive analysis

Applicability

c

Cyclic Analysis for Multicore Caching
We introduce cyclic analysis, an alternative measure for online algorithms
inspired by bijective analysis.

Bijective analysis compares inputs of the same “length”, while cyclic
analysis compares algorithms across all inputs rather than within
partitions.

14

Bijective analysis Cyclic analysis

…

c

Cyclic Analysis for Multicore Caching
We introduce cyclic analysis, an alternative measure for online algorithms
inspired by bijective analysis.

Bijective analysis compares inputs of the same “length”, while cyclic
analysis compares algorithms across all inputs rather than within
partitions.

15

Bijective analysis Cyclic analysis

…

Cyclic Analysis Measure

16

Applicability

Bijective analysis

Cyclic analysis

Cyclic Analysis Measure

17

Compares online
algorithms directly

Bijective analysis

Cyclic analysis

Applicability

Cyclic Analysis Measure

18

Compares online
algorithms directly

Can incorporate
restrictions on

universe of inputs

Bijective analysis

Cyclic analysis

Used to separate LRU

Applicability

Separating LRU With Cyclic Analysis

An online algorithm A is no worse than online algorithm B under cyclic
analysis on the universe of inputs if there exists a bijection
satisfying for all . We denote this by

I π : I ↔ I
A(R) ≤ B(π(R)) R ∈ I A ≤c B .

19

Algorithm
cost

Separating LRU With Cyclic Analysis

An online algorithm A is no worse than online algorithm B under cyclic
analysis on the universe of inputs if there exists a bijection
satisfying for all . We denote this by

I π : I ↔ I
A(R) ≤ B(π(R)) R ∈ I A ≤c B .

20

Main
proofAlgorithm

cost

Separating LRU With Cyclic Analysis

An online algorithm A is no worse than online algorithm B under cyclic
analysis on the universe of inputs if there exists a bijection
satisfying for all . We denote this by

I π : I ↔ I
A(R) ≤ B(π(R)) R ∈ I A ≤c B .

21

Main
proof

Main theorem: For any lazy caching algorithm A,
 on inputs with locality of reference.LRU ≤c A

Algorithm
cost

Cyclic Analysis: A Tutorial

22

Nodes are
inputs

Edges between inputs iff
A(R1) ≤ B(R2)

R1 R2

Input-cost graph: modeling mappings between inputs with different costs.
Given algorithms and a set of inputs :
A, B I

Cyclic Analysis: A Tutorial
Input-cost graph: modeling mappings between inputs with different costs.
Given algorithms and a set of inputs :
A, B I

23

Nodes are
inputs

Edges between inputs iff
A(R1) ≤ B(R2)

R1 R2

Goal: Define a bijection such that for all
inputs , .

Analysis technique: Partition the input-cost graph
and analyze the resulting subgraphs.

π : I ↔ I
R ∈ I A(R) ≤ B(π(R))

Cyclic Analysis: A Tutorial
Input-cost graph: modeling mappings between inputs with different costs.
Given algorithms and a set of inputs :
A, B I

24

Nodes are
inputs

Edges between inputs iff
A(R1) ≤ B(R2)

R1 R2

Goal: Define a bijection such that for all
inputs , .

Analysis technique: Partition the input-cost graph
and analyze cycles in the resulting subgraphs.

π : I ↔ I
R ∈ I A(R) ≤ B(π(R))

Cyclic Analysis: A Tutorial
Partitioning the input-cost graph: For problems such as single-core
caching, the length of inputs is well defined.

For general online problems (e.g. multicore caching), the length is not a
measure of difficulty.

25

Cyclic Analysis: A Tutorial
Partitioning the input-cost graph: For problems such as single-core
caching, the length of inputs is well defined.

For general online problems (e.g. multicore caching), the length is not a
measure of difficulty.

26

Cyclic analysis
generalizes the finite

partitions to the entire
universe of inputs.

Bijective analysis
partitions the input-cost graph

into finite subgraphs.

Bijective analysis Cyclic analysis

…

Example: Bijective vs Cyclic Analysis
Given algorithms for some online problem A, B P .

27

A(R1) = 10

A(R2) = 40

A(R3) = 20

A(R4) = 30

B(R1) = 20

B(R2) = 30

B(R3) = 40

B(R4) = 20

Same
lengths

c

Example: Bijective vs Cyclic Analysis
Given algorithms for some online problem A, B P .

28

A(R1) = 10

A(R2) = 40

A(R3) = 20

A(R4) = 30

B(R1) = 20

B(R2) = 30

B(R3) = 40

B(R4) = 20

Same
lengths

Under bijective
analysis: no way to

establish the
advantage of A over B

c

Example: Bijective vs Cyclic Analysis
Given algorithms for some online problem A, B P .

29

A(R1) = 10

A(R2) = 40

A(R3) = 20

A(R4) = 30

B(R1) = 20

B(R2) = 30

B(R3) = 40

B(R4) = 20

Same
lengths

Under bijective
analysis: no way to

establish the
advantage of A over B

Under cyclic
analysis:

A <C B

Properties of Cyclic Analysis
The cyclic analysis measure has several natural properties:

Transitivity ().

Directedness (implies).

Cyclic analysis can be used to show “to-be-expected” relationships
between multicore caching algorithms:

All lazy algorithms are equivalent.

Any lazy algorithm is strictly better than Flush-When-Full (for p=2).

A ≤c B, B ≤c C → A ≤c C

A <c B B ≰c A

A

30

Properties of Cyclic Analysis
The cyclic analysis measure has several natural properties:

Transitivity ().

Directedness (implies).

Cyclic analysis can be used to show “to-be-expected” relationships between
multicore caching algorithms:

All lazy algorithms are equivalent.

Any lazy algorithm is strictly better than Flush-When-Full (for p=2).

A ≤c B, B ≤c C → A ≤c C

A <c B B ≰c A

A

31

Free-Interleaving Model [LS12]

32

Problem setup: given a multicore processor with cores and pages.

An input is formed by request sequences composed of
page requests, where each core must serve its corresponding request
sequence.

Page requests arrive at discrete timesteps.

p k

R p R = R1, …, Rp

Free-Interleaving Model [LS12]
Problem setup: given a multicore processor with cores and pages.

An input is formed by request sequences composed of
page requests, where each core must serve its corresponding request
sequence.

Page requests arrive at discrete timesteps.

p k

R p R = R1, …, Rp

33

Cache: ab

Free-Interleaving Model [LS12]
Problem setup: given a multicore processor with cores and pages.

An input is formed by request sequences composed of
page requests, where each core must serve its corresponding request
sequence.

Page requests arrive at discrete timesteps.

p k

R p R = R1, …, Rp

34

Hit: abab . . .

Requests
continue

Cache: ab

Free-Interleaving Model [LS12]

35

Hit: Fault: abab . . .

Requests
continue

Cache: ab

cτ . . .

Fetch delay
of τ > 1

Problem setup: given a multicore processor with cores and pages.

An input is formed by request sequences composed of
page requests, where each core must serve its corresponding request
sequence.

Page requests arrive at discrete timesteps.

p k

R p R = R1, …, Rp

Locality of Reference

36

Main theorem: For any lazy caching algorithm A,
 on inputs with locality of reference.LRU ≤c A

Intuitively: an input has locality of
reference if the number of distinct

pages requested is bounded [AFG02].

Locality of Reference

37

Main theorem: For any lazy caching algorithm A,
 on inputs with locality of reference.LRU ≤c A

Intuitively: an input has locality of
reference if the number of distinct

pages requested is bounded [AFG02].

abcde…
No locality

ababa…
Some

locality

Advantage of LRU with Locality

38

Goal: For any lazy algorithm A, define a bijection over the space of inputs
with locality satisfying for all .

Intuition: Analyze timesteps where A and LRU differ. Suppose at time t, LRU
evicts page , while A evicts .

π
I LRU(R) ≤ A(π(R)) R ∈ I

σLRU σNLRU

Advantage of LRU with Locality

39

Goal: For any lazy algorithm A, define a bijection over the space of inputs
with locality satisfying for all .

Intuition: Analyze timesteps where A and LRU differ. Suppose at time t, LRU
evicts page , while A evicts .

π
I LRU(R) ≤ A(π(R)) R ∈ I

σLRU σNLRU

Case 1: Swapping in the

continuation maintains locality.

 swaps them in the continuation.

σLRU, σNLRU

π(R)
LRU(R) = A(π(R)) .

Advantage of LRU with Locality

40

Goal: For any lazy algorithm A, define a bijection over the space of inputs
with locality satisfying for all .

Intuition: Analyze timesteps where A and LRU differ. Suppose at time t, LRU
evicts page , while A evicts .

π
I LRU(R) ≤ A(π(R)) R ∈ I

σLRU σNLRU

Case 1: Swapping in the

continuation maintains locality.

 swaps them in the continuation.

σLRU, σNLRU

π(R)
LRU(R) = A(π(R)) .

Case 2: Swapping in the

continuation does not maintain locality.

To show:

σLRU, σNLRU

LRU(R) ≤ A(π(R))

Constructing a Mapping

41

Case 2: Swapping in the

continuation does not maintain locality.

To show:

σLRU, σNLRU

LRU(R) ≤ A(π(R))

If there is a miss before a
request to after time t,

set

Therefore,

σNLRU
π(R) = R .

LRU(R) = A(π(R)) .

Constructing a Mapping

42

Case 2: Swapping in the

continuation does not maintain locality.

To show:

σLRU, σNLRU

LRU(R) ≤ A(π(R))

If there is a miss before a
request to after time t,

set

Therefore,

σNLRU
π(R) = R .

LRU(R) = A(π(R)) .

If there was not a miss
before a request to

after time t, LRU hits on the
first request to .

σNLRU

σNLRU

LRU(R) ≤ A(π(R))

The previous two cases cover entire codomain, but not the domain.

For remaining inputs, map them arbitrarily to inputs of higher cost.

Mapping to Inputs of Different Length

43

LRU(R) = A(π(R))

… …

The previous two cases cover entire codomain, but not the domain.

For remaining inputs, map them arbitrarily to inputs of higher cost.

44

LRU(R) = A(π(R))

… …

LRU(R) < A(π(R))

Mapping to Inputs of Different Length

The previous two cases cover entire codomain, but not the domain.

For remaining inputs, map them arbitrarily to inputs of higher cost.

45

LRU(R) = A(π(R))

… …

LRU(R) < A(π(R))Equivalence with
bijective mapping

Mapping to Inputs of Different Length

The previous two cases cover entire codomain, but not the domain.

For remaining inputs, map them arbitrarily to inputs of higher cost.

46

LRU(R) = A(π(R))

… …

LRU(R) ≤ A(π(R))

LRU(R) < A(π(R))Equivalence with
bijective mapping

Mapping to Inputs of Different Length

Conclusions
Cyclic analysis compares online algorithms directly on a set of inputs and
establishes the advantage of LRU on inputs with locality.

Since it is more general and flexible than bijective analysis, we expect
it to be useful in the study of other online problems.

Multicore caching is well-studied in practice and motivated by
hierarchical memory.

The need for theoretical understanding will only grow as multicore
architectures become more prevalent.

47

Conclusions
Cyclic analysis compares online algorithms directly on a set of inputs and
establishes the advantage of LRU on inputs with locality.

Since it is more general and flexible than bijective analysis, we expect it to
be useful in the study of other online problems.

Multicore caching is well-studied in practice and motivated by
hierarchical memory.

The need for theoretical understanding will only grow as multicore
architectures become more prevalent.

48

Conclusions
Cyclic analysis compares online algorithms directly on a set of inputs and
establishes the advantage of LRU on inputs with locality.

Since it is more general and flexible than bijective analysis, we expect it to
be useful in the study of other online problems.

Multicore caching is well-studied in practice and motivated by hierarchical
memory.

The need for theoretical understanding will only grow as multicore
architectures become more prevalent.

49

Conclusions
Cyclic analysis compares online algorithms directly on a set of inputs and
establishes the advantage of LRU on inputs with locality.

Since it is more general and flexible than bijective analysis, we expect it to
be useful in the study of other online problems.

Multicore caching is well-studied in practice and motivated by hierarchical
memory.

The need for theoretical understanding will only grow as multicore
architectures become more prevalent.

50

