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 Introduction
Caching for multicore architectures has been well-studied in practice [FSS06, 
QJPSE07, SRD04], but our theoretical understanding lags behind.
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Relaxing Competitive Analysis
Resource augmentation [ST85] relaxes strict worst-case (competitive) 
analysis by giving online algorithms additional resources.


In single-core caching, doubling the space makes LRU 2-competitive. 
The same result does not hold in multicore [LS12]. 

In multicore caching, a constant factor in resource augmentation 
yields an O(log p)-competitive algorithm (where p is the number of 
cores) [ABDKPS20]. 
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Alternative Measures
Many alternative measures have been proposed for single-core caching but 
have not been studied in the parallel setting [Y94, Y98, KP00, KPR92, BLN01, BFL05, 

BB94].
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Cyclic Analysis for Multicore Caching
We introduce cyclic analysis, an alternative measure for online algorithms 
inspired by bijective analysis.


Bijective analysis compares inputs of the same “length”, while cyclic 
analysis compares algorithms across all inputs rather than within 
partitions.
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Cyclic Analysis Measure
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Cyclic Analysis Measure
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Separating LRU With Cyclic Analysis

An online algorithm A is no worse than online algorithm B under cyclic 
analysis on the universe of inputs  if there exists a bijection  
satisfying  for all . We denote this by 

I π : I ↔ I
A(R) ≤ B(π(R)) R ∈ I A ≤c B .
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 on inputs with locality of reference.LRU ≤c A
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Cyclic Analysis: A Tutorial
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Cyclic Analysis: A Tutorial
Partitioning the input-cost graph: For problems such as single-core 
caching, the length of inputs is well defined. 


For general online problems (e.g. multicore caching), the length is not a 
measure of difficulty.
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Example: Bijective vs Cyclic Analysis
Given algorithms  for some online problem A, B P .
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Properties of Cyclic Analysis
The cyclic analysis measure has several natural properties:


Transitivity ( ).


Directedness (  implies ).


Cyclic analysis can be used to show “to-be-expected” relationships 
between multicore caching algorithms: 

All lazy algorithms are equivalent. 

Any lazy algorithm  is strictly better than Flush-When-Full (for p=2).

A ≤c B, B ≤c C → A ≤c C

A <c B B ≰c A

A
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Free-Interleaving Model [LS12]
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Main theorem: For any lazy caching algorithm A, 
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Advantage of LRU with Locality
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Case 2: Swapping  in the
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To show:   
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If there is a miss before a 
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The previous two cases cover entire codomain, but not the domain.


For remaining inputs, map them arbitrarily to inputs of higher cost.

Mapping to Inputs of Different Length
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Conclusions
Cyclic analysis compares online algorithms directly on a set of inputs and 
establishes the advantage of LRU on inputs with locality.


Since it is more general and flexible than bijective analysis, we expect 
it to be useful in the study of other online problems. 

Multicore caching is well-studied in practice and motivated by 
hierarchical memory. 

The need for theoretical understanding will only grow as multicore 
architectures become more prevalent.
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