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Several scientific computing applications involve reducing many (potentially 
overlapping) regions of a tensor to a single value for each region, using a binary 
associative operator .


Inclusion: The summed-area table (integral image problem) preprocesses an 
image to answer queries about the sum in rectangular subregions of a tensor [C84].


Exclusion: The essence of the fast multipole method (FMM) is a reduction of a 
subregion’s elements, excluding elements too close [BG97, CRW93, D00].

⊕

Tensor Region Sums
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Several scientific computing applications involve reducing many (potentially 
overlapping) regions of a tensor to a single value for each region, using a binary 
associative operator .


Inclusion: The summed-area table (SAT) method preprocesses an image to 
answer queries about the sum in rectangular subregions of a tensor [C84].


Exclusion: The essence of the fast multipole method (FMM) is a reduction of a 
subregion’s elements, excluding elements too close [BG97, CRW93, D00].
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Several scientific computing applications involve reducing many (potentially 
overlapping) regions of a tensor to a single value for each region, using a binary 
associative operator .


Inclusion: The summed-area table (SAT) method preprocesses an image to 
answer queries about the sum in rectangular subregions of a tensor [C84].


Exclusion: The essence of the fast multipole method (FMM) is a reduction of a 
subregion’s elements, excluding elements too close [BG97, CRW93, D00].
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Excluded-sums Problem
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The excluded-sums problem [DDELP05] underlies applications that require 
reducing regions of a tensor to a single value using .


Takes as input an  matrix  and “box size”  where 
.


The problem involves reducing the excluded region outside of every -box 
in the matrix.

⊕

n1 × n2 A k = (k1, k2)
k1 ≤ n1, k2 ≤ n2

k

Binary associative operator
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Included-sums Problem
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The included-sums problem takes the same input as the excluded-sums 
problem.


In 2D, the included sum at coordinate  involves reducing 
(accumulating with ) all elements in the -box cornered at .

(x1, x2)
⊕ k (x1, x2)

Binary associative operator

Xk1

k2

(x1, x2)

n1

n2

N = n1n2
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The included-sums problem takes the same input as the excluded-sums 
problem.


In 2D, the included sum at coordinate  involves reducing 
(accumulating with ) all elements in the -box cornered at .
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Binary associative operator

Xk1

k2
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n2
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The included-sums problem takes the same input as the excluded-sums 
problem.


In 2D, the included sum at coordinate  involves reducing 
(accumulating with ) all elements in the -box cornered at .

(x1, x2)
⊕ k (x1, x2)

Binary associative operator

Xk1

k2

(x1, x2)

n1

n2

x1+k1−1

⨁
y1=x1

x2+k2−1

⨁
y2=x2

A[y1, y2]

Can be computed 
straightforwardly with 
four nested loops in 

 time.Θ(n1n2k1k2)

N = n1n2

Included-sums Problem
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We present an example with addition for ease of understanding, but in 
general an algorithm for these problems should work with general operators.



Included and Excluded Sums With 
and Without Operator Inverse
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This approach fails for operators without inverse such as max, or the 
FMM’s functions, which may exhibit singularities [DDELP05]. 

We refine the included- and excluded-sums problems into weak and 
strong versions. The weak version requires an operator inverse, while 
the strong version does not.

X⊖ = X

Given an 
operator inverse, 

can solve 
excluded by 

subtracting out 
included
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Algorithm Problem Weak/Strong Time Space

Given a -dimensional tensor with  elements:d N

Summed-area table Included Weak Θ(2dN) Θ(N)

State of the Art for Included and 
Excluded Sums
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Algorithm Problem Weak/Strong Time Space

Given a -dimensional tensor with  elements:d N

Summed-area table Included Weak Θ(2dN) Θ(N)
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Algorithm Problem Weak/Strong Time Space

Given a -dimensional tensor with  elements:d N

Summed-area table Included Weak Θ(2dN) Θ(N)

Corners(c) Excluded Strong Ω(2dN) Θ(cN)

Bidirectional 
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Strong Excluded Sums in 3D

New in 
this work

Best asymptotically, 
uses extra space

Variable amount of 
extra space
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Weak and Strong Excluded 
Sums in Higher Dimensions

Box 
complement

BDBS + 
subtraction

SAT + 
subtraction

Naive ⊖ ⊖

⊖
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Bidirectional Box-sum Algorithm 
for Strong Included Sums

We will start with the bidirectional box-sum algorithm (BDBS) in one 
dimension then show how to extend the technique to higher dimensions.


Given a list  of length  and a (scalar) box size , output a list  of 
included sums. 

A N k A′￼

2 5 3 1 6 3 9 0
1 2 3 4 5 6 7Position

A

11 15 13 19 18 12 9 0A′￼

8

TargetTarget

Input

 = 4k
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Bidirectional Box-sum Algorithm 
for Strong Included Sums

We will start with the bidirectional box-sum algorithm (BDBS) in one 
dimension then show how to extend the technique to higher dimensions.


Given a list  of length  and a (scalar) box size , output a list  of 
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The BDBS technique extends into arbitrary dimensions by performing the 
prefixes and suffixes along each dimension in turn.


Given a -dimensional tensor with  elements, BDBS solves the strong 
included-sums problem in  time and  space.

d N
Θ(dN) Θ(N)
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Multidimensional Bidirectional 
Box Sum

Bidirectional box sum

 along first dimension

Bidirectional box sum along

second dimension on result

f
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Given a -dimensional tensor and a “box size”, we will first sketch how to 
decompose the excluded region for each point into  disjoint regions.


At a high level, the “ -complement” of a box such that there is some 
coordinate in dimension  that is “out of range” in dimension , and 
the coordinates are “in range” for all dimensions  .

d
2d

i
j ∈ [1,i] j

m ∈ [i + 1,d]

30

Formulating the Excluded Sum 
as the Box Complement

X1 2

3

4

Dimension 2

Dimension 1
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Box Complement Algorithm for 
Strong Excluded Sums

(i) Prefix along 
each row

(ii) 
BDBS 
along 
each 

column

f
X

(i) Suffix along 
each row

f X

f (ii) 
BDBS 
along 
each 

column

f X Prefix Suffixf X

The box-complement algorithm uses dimension reduction to compute the 
“ -complement” for all .


The BDBS algorithm for included sums is a major subroutine in the box-
complement algorithm to sum up elements "in the range.”

i i = 1,…, d
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Extending the Box-complement 
Algorithm to Higher Dimensions
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Extending the Box-complement 
Algorithm to Higher Dimensions
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Each dimension-reduction step takes  time and reuses the same 
temporaries, for a total of  time and  space.

Θ(N)
Θ(dN) Θ(N)
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This work introduces the box-complement algorithm for the excluded-sums 
problem, which improves the running time of the state-of-the-art corners 
algorithm from  to .


Since floating-point subtraction is less numerically stable than addition, our 
next step is to study the numerical accuracy of the different algorithms.


Future work includes incorporating the BDBS and box-complement 
algorithm into the FMM.

Ω(2dN) Θ(dN)
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Excluded Sums with Different 
Operators


