
ACDA

June 21, 2021

1

Helen Xu Charles E. Leiserson

Multidimensional Included
and Excluded Sums

Sean Fraser

2

Several scientific computing applications involve reducing many (potentially
overlapping) regions of a tensor to a single value for each region, using a binary
associative operator .

Inclusion: The summed-area table (integral image problem) preprocesses an
image to answer queries about the sum in rectangular subregions of a tensor [C84].

Exclusion: The essence of the fast multipole method (FMM) is a reduction of a
subregion’s elements, excluding elements too close [BG97, CRW93, D00].

⊕

Tensor Region Sums

3

Several scientific computing applications involve reducing many (potentially
overlapping) regions of a tensor to a single value for each region, using a binary
associative operator .

Inclusion: The summed-area table (SAT) method preprocesses an image to
answer queries about the sum in rectangular subregions of a tensor [C84].

Exclusion: The essence of the fast multipole method (FMM) is a reduction of a
subregion’s elements, excluding elements too close [BG97, CRW93, D00].

⊕

Tensor Region Sums

⊕

Summed-area Table

⊕

computes
reductions

for all N
points

4

Several scientific computing applications involve reducing many (potentially
overlapping) regions of a tensor to a single value for each region, using a binary
associative operator .

Inclusion: The summed-area table (SAT) method preprocesses an image to
answer queries about the sum in rectangular subregions of a tensor [C84].

Exclusion: The essence of the fast multipole method (FMM) is a reduction of a
subregion’s elements, excluding elements too close [BG97, CRW93, D00].

⊕

Tensor Region Sums

⊕

Summed-area Table

⊕

⊕

Fast Multipole Method

⊕computes
reductions

for all N
points

computes
reductions

for all
excluded
regions

Excluded-sums Problem

5

The excluded-sums problem [DDELP05] underlies applications that require
reducing regions of a tensor to a single value using .

Takes as input an matrix and “box size” where
.

The problem involves reducing the excluded region outside of every -box
in the matrix.

⊕

n1 × n2 A k = (k1, k2)
k1 ≤ n1, k2 ≤ n2

k

Binary associative operator

6

The excluded-sums problem [DDELP05] underlies applications that require
reducing regions of a tensor to a single value using .

In 2D, it takes as input an matrix and “box size”
where .

The problem involves reducing the excluded region outside of every -box
in the matrix.

⊕

n1 × n2 A k = (k1, k2)
k1 ≤ n1, k2 ≤ n2

k

Binary associative operator

Xk1

k2

n1

n2

(x1, x2)

N = n1n2

Excluded-sums Problem

7

The excluded-sums problem [DDELP05] underlies applications that require
reducing regions of a tensor to a single value using .

In 2D, it takes as input an matrix and “box size”
where .

The problem involves reducing the excluded region outside of every -box
in the matrix.

⊕

n1 × n2 A k = (k1, k2)
k1 ≤ n1, k2 ≤ n2

k

Binary associative operator

Xk1

k2

(x1, x2)

n1

n2

-box cornered at
coordinate
k

(x1, x2)

N = n1n2

Excluded-sums Problem

Included-sums Problem

8

The included-sums problem takes the same input as the excluded-sums
problem.

In 2D, the included sum at coordinate involves reducing
(accumulating with) all elements in the -box cornered at .

(x1, x2)
⊕ k (x1, x2)

Binary associative operator

Xk1

k2

(x1, x2)

n1

n2

N = n1n2

9

The included-sums problem takes the same input as the excluded-sums
problem.

In 2D, the included sum at coordinate involves reducing
(accumulating with) all elements in the -box cornered at .

(x1, x2)
⊕ k (x1, x2)

Binary associative operator

Xk1

k2

(x1, x2)

n1

n2

x1+k1−1

⨁
y1=x1

x2+k2−1

⨁
y2=x2

A[y1, y2]

N = n1n2

Included-sums Problem

10

The included-sums problem takes the same input as the excluded-sums
problem.

In 2D, the included sum at coordinate involves reducing
(accumulating with) all elements in the -box cornered at .

(x1, x2)
⊕ k (x1, x2)

Binary associative operator

Xk1

k2

(x1, x2)

n1

n2

x1+k1−1

⨁
y1=x1

x2+k2−1

⨁
y2=x2

A[y1, y2]

Can be computed
straightforwardly with
four nested loops in

 time.Θ(n1n2k1k2)

N = n1n2

Included-sums Problem

11

Input Inclusion

1 3 6 2 5
3 9 1 1

25 5 3
2

3 9
6 2 7 8
4

1
0

1

16
18
13 10

15
15

11
24

88

19
16

8
3

10 10 7
10 8 4

14
10

11
17
8

75
73
78 81
76

80
67

8383

72
75

83
78

81 81 84
81 83 87

77
81

76
74
80

83
2

Inclusion and Exclusion Example
Exclusion

12

Input Inclusion

1 3 6 2 5
3 9 1 1

25 5 3
2

3 9
6 2 7 8
4

1
0

1

16
18
13 10

15
15

11
24

88

19
16

8
3

10 10 7
10 8 4

14
10

11
17
8

75
73
78 81
76

80
67

8383

72
75

83
78

81 81 84
81 83 87

77
81

76
74
80

83
2

Inclusion and Exclusion Example
Exclusion

13

Input Inclusion

1 3 6 2 5
3 9 1 1

25 5 3
2

3 9
6 2 7 8
4

1
0

1

16
18
13 10

15
15

11
24

88

19
16

8
3

10 10 7
10 8 4

14
10

11
17
8

75
73
78 81
76

80
67

8383

72
75

83
78

81 81 84
81 83 87

77
81

76
74
80

83
2

Inclusion and Exclusion Example
Exclusion

We present an example with addition for ease of understanding, but in
general an algorithm for these problems should work with general operators.

Included and Excluded Sums With
and Without Operator Inverse

14

This approach fails for operators without inverse such as max, or the
FMM’s functions, which may exhibit singularities [DDELP05].

We refine the included- and excluded-sums problems into weak and
strong versions. The weak version requires an operator inverse, while
the strong version does not.

X⊖ = X

Given an
operator inverse,

can solve
excluded by

subtracting out
included

Included and Excluded Sums With
and Without Operator Inverse

15

This approach fails for operators without inverse such as max, or the
FMM’s functions, which may exhibit singularities [DDELP05].

We refine the included- and excluded-sums problems into weak and
strong versions. The weak version requires an operator inverse, while
the strong version does not.

X⊖ = X

Given an
operator inverse,

can solve
excluded by

subtracting out
included

Included and Excluded Sums With
and Without Operator Inverse

16

This approach fails for operators without inverse such as max, or the
FMM’s functions, which may exhibit singularities [DDELP05].

We refine the included- and excluded-sums problems into weak and
strong versions. The weak version requires an operator inverse, while the
strong version does not.

X⊖ = X

Given an
operator inverse,

can solve
excluded by

subtracting out
included

17

Algorithm Problem Weak/Strong Time Space

Given a -dimensional tensor with elements:d N

Summed-area table Included Weak Θ(2dN) Θ(N)

State of the Art for Included and
Excluded Sums

18

Algorithm Problem Weak/Strong Time Space

Given a -dimensional tensor with elements:d N

Summed-area table Included Weak Θ(2dN) Θ(N)

Corners(c) Excluded Strong Ω(2dN) Θ(cN)

State of the Art for Included and
Excluded Sums

Our Contributions

19

Algorithm Problem Weak/Strong Time Space

Given a -dimensional tensor with elements:d N

Summed-area table Included Weak Θ(2dN) Θ(N)

Corners(c) Excluded Strong Ω(2dN) Θ(cN)

Bidirectional

box-sum (BDBS) Included Strong Θ(dN) Θ(N)

This work

Our Contributions

20

Algorithm Problem Weak/Strong Time Space

Given a -dimensional tensor with elements:d N

Summed-area table Included Weak Θ(2dN) Θ(N)

Corners(c) Excluded Strong Ω(2dN) Θ(cN)

Bidirectional

box-sum (BDBS) Included Strong Θ(dN) Θ(N)

Box complement Excluded Strong Θ(N)Θ(dN)

This work

21

Strong Excluded Sums in 3D

New in
this work

Best asymptotically,
uses extra space

Variable amount of
extra space

22

Weak and Strong Excluded
Sums in Higher Dimensions

Box
complement

BDBS +
subtraction

SAT +
subtraction

Naive ⊖ ⊖

⊖

23

Bidirectional Box-sum Algorithm
for Strong Included Sums

We will start with the bidirectional box-sum algorithm (BDBS) in one
dimension then show how to extend the technique to higher dimensions.

Given a list of length and a (scalar) box size , output a list of
included sums.

A N k A′￼

2 5 3 1 6 3 9 0
1 2 3 4 5 6 7Position

A

11 15 13 19 18 12 9 0A′￼

8

TargetTarget

Input

 = 4k

24

Bidirectional Box-sum Algorithm
for Strong Included Sums

We will start with the bidirectional box-sum algorithm (BDBS) in one
dimension then show how to extend the technique to higher dimensions.

Given a list of length and a (scalar) box size , output a list of
included sums.

A N k A′￼

2 5 3 1 6 3 9 0

2 7 10 11 6 9 18 18

11 9 4 1 18 12 9 0

1 2 3 4 5 6 7Position

A

As

Ap

11 15 13 19 18 12 9 0A′￼

8

Prefix

Suffix

Target

Input

 = 4k Compute intermediate
prefix and suffix arrays
with prefixes and

suffixes of length each.
N/k

k

25

Bidirectional Box-sum Algorithm
for Strong Included Sums

We will start with the bidirectional box-sum algorithm (BDBS) in one
dimension then show how to extend the technique to higher dimensions.

Given a list of length and a (scalar) box size , output a list of
included sums.

A N k A′￼

2 5 3 1 6 3 9 0

2 7 10 11 6 9 18 18

11 9 4 1 18 12 9 0

1 2 3 4 5 6 7Position

A

As

Ap

11 15 13 19 18 12 9 0A′￼

8

Prefix

Suffix

Target

Input

 = 4k Compute intermediate
prefix and suffix arrays
with prefixes and

suffixes of length each.
N/k

k

26

Bidirectional Box-sum Algorithm
for Strong Included Sums

We will start with the bidirectional box-sum algorithm (BDBS) in one
dimension then show how to extend the technique to higher dimensions.

Given a list of length and a (scalar) box size , output a list of
included sums.

A N k A′￼

2 5 3 1 6 3 9 0

2 7 10 11 6 9 18 18

11 9 4 1 18 12 9 0

1 2 3 4 5 6 7Position

A

As

Ap

11 15 13 19 18 12 9 0A′￼

8

Prefix

Suffix

Target

Input

 = 4k Compute intermediate
prefix and suffix arrays
with prefixes and

suffixes of length each.
N/k

k
k

Suffix

Prefix

k

 time, space in 1DΘ(N)

The BDBS technique extends into arbitrary dimensions by performing the
prefixes and suffixes along each dimension in turn.

Given a -dimensional tensor with elements, BDBS solves the strong
included-sums problem in time and space.

d N
Θ(dN) Θ(N)

27

Multidimensional Bidirectional
Box Sum

Bidirectional box sum

 along first dimension

Bidirectional box sum along

second dimension on result

f
ffffff

ffffff

f

The BDBS technique extends into arbitrary dimensions by performing the
prefixes and suffixes along each dimension in turn.

Given a -dimensional tensor with elements, BDBS solves the strong
included-sums problem in time and space.

d N
Θ(dN) Θ(N)

28

Multidimensional Bidirectional
Box Sum

Bidirectional box sum

 along first dimension

Bidirectional box sum along

second dimension on result

f
ffffff

ffffff

f

The BDBS technique extends into arbitrary dimensions by performing the
prefixes and suffixes along each dimension in turn.

Given a -dimensional tensor with elements, BDBS solves the strong
included-sums problem in time and space.

d N
Θ(dN) Θ(N)

29

Multidimensional Bidirectional
Box Sum

Bidirectional box sum

 along first dimension

Bidirectional box sum along

second dimension on result

f
ffffff

ffffff

f

Given a -dimensional tensor and a “box size”, we will first sketch how to
decompose the excluded region for each point into disjoint regions.

At a high level, the “ -complement” of a box such that there is some
coordinate in dimension that is “out of range” in dimension , and
the coordinates are “in range” for all dimensions .

d
2d

i
j ∈ [1,i] j

m ∈ [i + 1,d]

30

Formulating the Excluded Sum
as the Box Complement

X1 2

3

4

Dimension 2

Dimension 1

Given a -dimensional tensor and a “box size”, we will first sketch how to
decompose the excluded region for each point into disjoint regions.

At a high level, the “ -complement” of a box such that there is some
coordinate in dimension that is “out of range” in dimension , and
the coordinates are “in range” for all dimensions .

d
2d

i
j ∈ [1,i] j

m ∈ [i + 1,d]

31

Formulating the Excluded Sum
as the Box Complement

Dimension 2

Dimension 1

X1 2

3

4

1-complement

Given a -dimensional tensor and a “box size”, we will first sketch how to
decompose the excluded region for each point into disjoint regions.

At a high level, the “ -complement” of a box such that there is some
coordinate in dimension that is “out of range” in dimension , and
the coordinates are “in range” for all dimensions .

d
2d

i
j ∈ [1,i] j

m ∈ [i + 1,d]

32

Formulating the Excluded Sum
as the Box Complement

Dimension 2

Dimension 1

X1 2

3

4

2-complement 1-complement

33

Box Complement Algorithm for
Strong Excluded Sums

(i) Prefix along
each row

(ii)
BDBS
along
each

column

f
X

(i) Suffix along
each row

f X

f (ii)
BDBS
along
each

column

f X Prefix Suffixf X

The box-complement algorithm uses dimension reduction to compute the
“ -complement” for all .

The BDBS algorithm for included sums is a major subroutine in the box-
complement algorithm to sum up elements "in the range.”

i i = 1,…, d

The box-complement algorithm uses dimension reduction to compute the
“ -complement” for all .

The BDBS algorithm for included sums is a major subroutine in the box-
complement algorithm to sum up elements "in the range.”

i i = 1,…, d

34

Box Complement Algorithm for
Strong Excluded Sums

(i) Prefix along
each row

(ii)
BDBS
along
each

column

f
X

(i) Suffix along
each row

f X

f (ii)
BDBS
along
each

column

f X Prefix Suffixf X

35

Extending the Box-complement
Algorithm to Higher Dimensions

Full Prefix / Suffix
Dimensions:

Included Sum
Dimensions:

1
2

1

2, 3

1, 2

3

3

1
2

3

1, 2, 3

None

3

2
1

36

Extending the Box-complement
Algorithm to Higher Dimensions

Full Prefix / Suffix
Dimensions:

Included Sum
Dimensions:

1

2, 3

1, 2

3

3

1
2

3

1, 2, 3

None

3

2
1 1

2

3

1
2

3

37

Extending the Box-complement
Algorithm to Higher Dimensions

Full Prefix / Suffix
Dimensions:

Included Sum
Dimensions:

1

2, 3

1, 2

3

1, 2, 3

None

3

2
1 1

2

3

1
2

3

38

Extending the Box-complement
Algorithm to Higher Dimensions

Full Prefix / Suffix
Dimensions:

Included Sum
Dimensions:

1

2, 3

1, 2

3

1, 2, 3

None

3

2
1 1

2

3

1
2

3

Each dimension-reduction step takes time and reuses the same
temporaries, for a total of time and space.

Θ(N)
Θ(dN) Θ(N)

Conclusion

39

This work introduces the box-complement algorithm for the excluded-sums
problem, which improves the running time of the state-of-the-art corners
algorithm from to .

Since floating-point subtraction is less numerically stable than addition, our
next step is to study the numerical accuracy of the different algorithms.

Future work includes incorporating the BDBS and box-complement
algorithm into the FMM.

Ω(2dN) Θ(dN)

Conclusion

40

This work introduces the box-complement algorithm for the excluded-sums
problem, which improves the running time of the state-of-the-art corners
algorithm from to .

Since floating-point subtraction is less numerically stable than addition, our
next step is to study the numerical accuracy of the different algorithms.

Future work includes incorporating the BDBS and box-complement
algorithm into the FMM.

Ω(2dN) Θ(dN)

Conclusion

41

This work introduces the box-complement algorithm for the excluded-sums
problem, which improves the running time of the state-of-the-art corners
algorithm from to .

Since floating-point subtraction is less numerically stable than addition, our
next step is to study the numerical accuracy of the different algorithms.

Future work includes incorporating the BDBS and box-complement
algorithm into the FMM.

Ω(2dN) Θ(dN)

42

43

Excluded Sums with Different
Operators

