
Optimizing Dynamic Graph
Processing on Multicores with

the Locality-First Strategy
Helen Xu

MIT / Lawrence Berkeley National Laboratory
https://people.csail.mit.edu/hjxu

https://people.csail.mit.edu/hjxu

Example Problem: Fast Multicore Graph Processing
One example of a multicore algorithm optimization problem is graph
processing [EdigerMcRiBa12, KyrolaBlGu12, ShunBl13, MackoMaMaSe15, DhulipalaBlSh19,

BusatoGrBoBa18, GreenBa16].

Many large graph datasets (e.g. the Twitter graph) can fit into the primary
memory of a single multicore.

2

Breadth-first search Betweenness centralityPageRank

Goal: Make these queries run as fast as possible.

Example graph queries, or algorithms:

Optimizing Programs on Multicores

Today’s multicores are widely accessible to general programmers and
relatively cheap compared to special-purpose hardware.

Two salient features of multicores are 1) multiple cores and 2) a steep
(multilevel) cache hierarchy.

3

E.g. Intel Haswell

Writing fast code on these
platforms is notoriously hard

because of these features

[Shun15, Schardl16, Kaler20,

and many others]

4

Makes use of
multiple cores

Makes use of the
cache hierarchy

Parallelism: the ability to perform
multiple operations at the same
time [Flynn72].

Locality: the tendency of
programs to access the same or
similar data over time [Denning72,

Denning05].

Adapting to Multicore Hardware Features

Shared Cache

p p p

L1

L2

L3

Main Memory

Disk

Real-World Graphs Are Sparse

Social networks Computational biology Road networks
…and others!

Sparse graphs, which have many fewer edges than the total possible
number of edges, underlie most real-world applications.

5

Sparsity disrupts locality due to the presence of many zeroes in the data.

Real-World Graphs Are Also Dynamic

6

Furthermore, many real-world sparse graphs are dynamic: they change
over time.

Updates

Systems for processing dynamic graphs support updates (e.g. edge
insertions and deletions) and queries (algorithms run on the graph).

Dynamic graphs disrupt locality because of the inherent tradeoff between
colocating and updating data.

Multicore Optimization Enables

Fast Graph Queries and Updates

Despite these challenges to locality, high-performance dynamic-graph-
processing systems such as Aspen [DhulipalaShBl19] have taken huge steps
towards efficient queries and updates.

On 48 cores, Aspen runs the following queries on Twitter (2.4B edges):

7

Breadth-first search Betweenness centralityPageRank
0.32s 24.03s 4.72s

Times are human-measurable even with parallelism,
demonstrating the importance of efficient processing

Query Speed in Dynamic Graph Systems

8

Both systems support

parallelization.

Both systems run the

same algorithms

by implementing

the Ligra [ShunBl13]
abstraction.

Surprisingly, in some cases,
Terrace achieves speedup
on queries over Ligra
[ShunBl13], a static graph
system.

Breadth-first Search PageRank Betweenness
Centrality

Connected
Components

Terrace [PandeyWhXuBu21], a dynamic graph processing system, optimizes further
with a “locality-first design” that takes advantage of graph structure.

Normalized Speedup
of Terrace Over Aspen
[DhulipalaShBl19]

[PandeyWhXuBu21] Pandey, Wheatman, Xu, Buluç. “Terrace: A Hierarchical Graph Container for Skewed Dynamic Graphs.” SIGMOD ’21.

Updatability of Dynamic Graph Systems

Terrace

Aspen

[DhulipalaShBl19]

9

Insertion Throughput
(in millions of edges
per second)

Batch Size

Edges were generated

using an rMAT

distribution [ChakrabatiZhFa04]

and added in batches

using the provided API.

Terrace achieves up to

48M inserts per second

and up to 9M deletes per

second. Future work

includes optimizing

batch deletions.

Terrace achieves the best of both worlds in query and update performance
by taking advantage of locality.

Dynamic Graph Processing and

the Locality-First Strategy

10

Understand locality
in dynamic graph

processing

Problem: Dynamic

graph processing

Exploit locality via data
structure design for

graphs

Add parallelism into data
structures

$$

Two Main Types of Locality

11

Makes use of
multiple elements

transferred together

Makes use of efficient
hierarchical
accesses

Spatial locality: how many
accesses an algorithm makes
makes to nearby data over a short
period of time [Denning72, Denning05].

Temporal locality: how many
repeated accesses an algorithm
makes to the same data over a
short period of time [Denning72,

Denning05].

Understanding Locality in Graph Queries

12

 Input: graph G, source vertex src
 let Q be a queue
 label src as explored
 Q.enqueue(src)
 while Q is not empty:
 v = Q.dequeue()
 for all edges (v, w) in G.neighbors(v):
 if w not explored:
 label w as explored

Scan

Systems for processing dynamic graphs must support fast graph queries.

Vertex scans, or the processing of a vertex’s incident edges, are a crucial
step in graph queries [ShunBl13].

Breadth-first search

 Input: graph G
 let triangle_count = 0
 let E = G.edges()
 for (u, v) in E:
 intersect neighbors of u and v:
 if u and v share a neighbor w:

Scan

Triangle counting
Each neighbor list is scanned at
most once (no temporal locality),
so optimize for spatial locality

Graph Representation Determines

Spatial Locality

Scanning a vertex:

0 0 1
0 1 2 3

13

Scan is Θ(|V |)

3

0 1

2

1

Two representations
of the neighbors of
vertex v V:∈
Uncompressed
stores a whole row
of the adjacency
matrix

Sparsity disrupts
locality with zeroes

Edge list yields efficiency
savings on queries by

representing and enabling
computation on only the

existing edges

Scan is Θ(degree(v))

2 3
0 1Edge array

stores neighbors
explicitly
[EisenstatGuScSh77]

Updating a vertex:

14

Edge array
stores neighbors
explicitly
[EisenstatGuScSh77]

3

0 1

2

Two representations
of the neighbors of
vertex v V:∈
Uncompressed
stores a whole row
of the adjacency
matrix

Tensions Between Spatial Locality

and Updatability

Update is O(1)

31 2
0 1 2

Shift

(Ordered) update is
O(degree(v))

Problem: can we choose data structures to support efficient scans and updates?

0 0 1
0 1 2 3

1 0 1 1
0 1 2 3

1

2 3
0 1

Trading Off Query and Update Performance

15

Aspen

(dynamic [DhulipalaBlSh19])

Ligra

(static [ShunBl13])

Query

Performance

Update Performance

Folk wisdom about graph processing says that query performance trades
off with update performance [EdigerMcRiBa12, KyrolaBlGu12, ShunBl13, MackoMaMaSe15,
DhulipalaBlSh19, BusatoGrBoBa18, GreenBa16] due to data representation choices.

To achieve good
performance, all of the
systems are parallel.

Terrace: A System for Efficiently Processing
Dynamic Sparse Graphs

Terrace overcomes the tradeoff between query and update performance
by using data structures that enhance spatial locality.

16

Terrace

(dynamic [PandeyWhXuBu21])

Query

Performance

Update Performance

Aspen

(dynamic [DhulipalaBlSh19])

Ligra

(static [ShunBl13])

To achieve good
performance, all of the
systems are parallel.

Most Graph Systems Separate Neighbor Lists

for Parallelization

17

Existing dynamic graph systems optimize for parallelism first with separate
per-vertex data structures e.g. trees [DhulipalaBlSh19], adjacency lists
[EdigerMcRiBa12], and others [KyrolaBlGu12, BusatoGrBoBa18, GreenBa16].

Weakness: Separating the data structures disrupts locality.

Simplified parallelization
over separate neighbor lists0 1 2

neighbors of 0

…

neighbors of 1

neighbors of 2

…

Vertex IDs
Pointers to edges

Edges

Dynamic Graph Processing and

the Locality-First Strategy

18

Understand locality
in dynamic graph

processing

Problem: Dynamic

graph processing

Exploit locality via data
structure design for

graphs

Add parallelism into data
structures

$$

Enhancing Spatial Locality by

Colocating Neighbor Lists

19

Cache misses between
vertices while reading all edges

in any order (e.g. PageRank)

Idea: Colocate neighbor lists in the same data structure, which avoids cache
misses when traversing edges in order.

neighbors of 0, neighbors of 1, neighbors of 2 …

x

x

Scan

PPCSR [WheatmanXu21]:
colocating data with

efficient parallelization

Question: Do these misses actually affect performance, or are they a low-order term?
[WheatmanXu21] Wheatman and Xu. “A Parallel Packed Memory Array to Store Dynamic Graphs.” ALENEX ’21.

neighbors of 0

neighbors of 1

neighbors of 2

0 1 2 …

…

Vertex IDs
Pointers to edges

Edges

0 1 2 …

…

Dynamic Graphs Are Often Skewed
Real-world dynamic graphs, e.g. social network graphs, often follow a skewed
(e.g. power-law) distribution with a few high-degree vertices and many low-
degree vertices [BarabasiAl99].

Example power law:

Graph % < 10 neighbors % < 1000 neighbors
Twitter 64.56 99.51

Number of Twitter followers

Frequency

These graphs exhibit
high degree variance:

for example, the
maximum degree in
the Twitter graph is

about 3 million
[BeamerAsPa15]

20

Next step: refine the solution with a hierarchical design that takes
advantage of skewness while maintaining locality as much as possible.

21

Problem: High-degree
vertices slow down updates
for all vertices in the shared

data structure

Standalone for

updatability

Shared for

spatial locality

Insight: Locality-First Skew-Aware Design

22

Shared Packed Memory Array
[ItaiKoRo81, BenderDeFa00]

Trades locality for
updatability

Terrace implements the locality-first hierarchical design with cache-friendly
data structures.

Vertex
degree

Implementing the Hierarchical Skew-Aware Design

Contiguous for
spatial locality

Standalone B-tree
[BayerMc72]

Scan

Insert

Get

In theory, B-trees [BayerMc72] asymptotically dominate Packed Memory Arrays
(PMA) [ItaiKoRo81, BenderDeFa00] in the classical external-memory model [AggarwalVi88].

Given a cache block size and input size , B-trees and PMAs take
block transfers to scan.

B-tree inserts take transfers, while PMA inserts take .

B N Θ(N/B)

O(logB(N)) O(log2(N))

Selecting Data Structures for Dynamic Graphs

23

Problem: Neither data
structure clearly wins for
dynamic graphs because

graphs require fast
updates and scans

Solution: use both,
depending on degree

PMA/B-tree
runtime

B-tree better

Number of Elements

The theory does not
capture sequential vs

random access

PMA better

Exploiting Skewness for Cache-Friendliness

24

The locality-first design in Terrace reduces cache misses during graph
queries.

Query Ligra
[ShunBl13]

Aspen
[DhulipalaShBl19]

Terrace
[PandeyWhXuBu21]

Breadth-first
Search 3.5M 6.3M 1.1M

PageRank 174M 197M 128M

Static Dynamic

On the
LiveJournal

graph

Cache-friendliness translates into
graph query performance

Additional optimization: store
some edges in-place for

extra spatial locality

Terrace: Applying the Locality-First Strategy to

Dynamic Graph Processing

In practice, Terrace is about 2x faster on graph query algorithms than
Aspen while maintaining similar updatability.

Terrace’s cache-friendly design demonstrates the impact of the locality-
first strategy in graph processing.

25

Understand locality:
opportunities for
spatial locality

due to skewness

Problem: Dynamic

graph processing

Exploit spatial locality with
a cache-friendly skew-

aware data structure

Implementation of Terrace,
a parallel dynamic-graph-
processing system based

on the skew-aware design
[PandeyWhXuBu21]

https://github.com/PASSIONLab/terrace

$$

Talk Outline

Case Study: Dynamic Graph Processing via the
Locality-First Strategy

Applicability of the Locality-First Strategy

Other Contributions

Research Mission, Future Work, and Research Vision

26

How To Develop Efficient Multicore Algorithms

27

To create parallel algorithms and data structures for multicores that are
theoretically and practically efficient, practitioners should use a

locality-first strategy.

Understand locality Exploit locality via
algorithm engineering Add parallelismProblem

$$

Why locality-first for general problems?

28

Locality-First Enables

Easier Algorithm Engineering

The locality-first strategy simplifies writing parallel code by focusing on
the serial execution first.

29

Multithreading

Theory Practice

E.g. Race conditions [FengLe97],
false sharing [TorrellasLaHe94],

profiling scalability
[SchardlKuLeLeLe15].

For example, my coauthors and I implemented a (serial) Packed Memory Array
[WheatmanXu18] before the parallel version [WheatmanXu21], which Terrace [PandeyWhXuBu21]
builds on.

[WheatmanXu18] Wheatman and Xu. “Packed Compressed Sparse Row: A Dynamic Graph Representation.” HPEC ’18.

Spatial Locality Enables Other Types of Parallelism

The locality-first strategy draws inspiration from Cilk’s [FrigoLeRa98] work-first
principle of minimizing the work in serial, allowing for peak efficiency after
task parallelization.

30

Data-Level Parallelism
(e.g. SIMD [Flynn72])

e.g. vectorizing the PMA in Terrace is more
straightforward because it is contiguous

Applying the same operation
to a set of values

Temporal Locality Offers Multiple Opportunities for
Performance Improvement

In reality, speedups due to temporal locality are continuous because of the
multiple levels of the cache hierarchy.

31

L1

L2

L3

Main Memory

Disk

Numbers Everyone Should Know
[Dean09]

0.5ns

7ns

100 ns

25ns (approx.)
[Intel i7 guide]

10,000,000 ns

My work [Bender et al. 20, LincolnLiLyXu18] touches on cache-oblivious algorithms
[FrigoLePrRa99], which use all levels of cache asymptotically optimally.

[Bender et al. 20] Bender et al. “Closing the Gap Between Cache-oblivious and Cache-adaptive Analysis.” SPAA ’20.

[LincolnLiLyXu18] Lincoln, Liu, Lynch, Xu. “Cache-Adaptive Exploration: Experimental Results and Scan-Hiding for Adaptivity.” SPAA 18.

Balancing Parallelism and Cache-Friendliness

The locality-first strategy may be surprising for overall performance
improvement because locality and parallelism conflict with each other.

32

Locality-first ensures that you
have ample cache-friendliness
to maintain good performance

after parallelization

Cache-friendly Parallel

Locality as a currency in
algorithm engineering: can

spend some to get parallelism

[inspired by MIT 6.172, Lecture 1]

Cache-friendly Parallel

Parallelization

For example, Terrace optimizes for locality first and then trades some of it for
efficient parallelization.

Talk Outline

Case Study: Dynamic Graph Processing via the
Locality-First Strategy

Applicability of the Locality-First Strategy

Other Contributions

Research Mission, Future Work, and Research Vision

33

HighLow

High

Spatial
Locality

Temporal Locality

Classification of Contributions

34

PPCSR

[WheatmanXu18, WheatmanXu21]

PHIL [AhrensXuSc18]Terrace

[PandeyWhXuBu21]

Multicore caching
[KamaliXu20, KamaliXu21]

Cache adaptivity
[LincolnLiLyXu18, Bender et al. 20]

Accurate
prefix sums
[FraserXuLe20]

Write-optimized skip
lists [Bender et al. 17]

Included and
excluded sums

[XuFrLe21]

[Bender et al. 17] PODS ’17.

[AhrensXuSc18] IPDPS ’18.

[LincolnLiLyXu18] SPAA ’18.

[WheatmanXu18] HPEC ’18.

[Bender et al. 20] SPAA ’20.

[KamaliXu20] SPAA ’20.

[FraserXuLe20] HPEC ’20.

[KamaliXu21] APOCS ’21.

[WheatmanXu21] ALENEX ’21.

[PandeyWhXuBu21] SIGMOD ’21.

[XuFrLe21] ACDA ’21.

HighLow

High

Spatial
Locality

Temporal Locality

Exploring the Locality-First Strategy

35

Terrace

[SIGMOD 21]

Accurate
prefix sums
[FraserXuLe20]Vignettes: Multicore caching

[KamaliXu20, KamaliXu21]

Example Problem: Accurate Prefix Sums

Prefix sums (aka scans) appear in a wide range of applications and have
been targeted for efficient implementations e.g. Parlaylib [BlellochAnDh20],
NVIDIA GPU [HarrisSeOw07].

36

Floating-point prefix sums underlie applications in scientific computing
such as summed-area table generation [Crow84] and the fast multipole method
[GreengardRo85].

{yk =
x0
xk + yk−1

if k = 0
if k ≥ 1.

Output array of
running sums

Input array of elements

Example: Locality-First in Accurate Prefix Sums

37

+ +

+

+ +

+

+

Accuracy

Speed

Compensated
scan [Kahan85]

Parallel
scan

[BlellochAn
Dh20]

Parallel
accurate

scan
[FraserXuLe20]

Understand locality:
tree summation has

 limited temporal locality,

opportunities for spatial

Problem: Minimize error in fast floating-point prefix sums [Higham93].
Limited machine precision

Tree-like summation
to reduce error

Exploit locality:
tree blocking for

spatial locality

+ +

+

$$

[FraserXuLe20] Fraser, Xu, Leiserson. “Work-Efficient Parallel Algorithms for Accurate Floating-Point Prefix Sums.” HPEC ’20.

Example Problem: Multicore Cache Replacement
One possible concern with locality-first is that locality and parallelism are in
tension with one another.

For example, every multicore system with shared memory must implement a
cache replacement policy that decides what to evict when the cache gets full.

Parallelism can disrupt cache-friendliness of cache-replacement algorithms
when multiple workers contend for space [López-OrtizSa12, KattiRa12].

38

Shared Cache

p p p

Example: Grounding Locality-First in

Multicore Cache Replacement

Goal: Theoretically ground the locality-first strategy in multicore cache
replacement via a new theoretical framework that extends “beyond-worst-
case” analysis to take temporal locality into account [Roughgarden20]

39

Multicore Caching
[López-OrtizSa12]

Worst-case analysis
[KamaliXu20]

Cyclic analysis
[KamaliXu21]

Least-Recently-Used
[SleatorTa84]

Anything else
Grounds the

empirical superiority
of LRU due to

naturally-occurring
locality [AlbersFaGi02]

[KamaliXu20] Kamali and Xu. “Brief Announcement: Multicore Paging Algorithms Cannot Be Competitive.” SPAA ’20.

[KamaliXu21] Kamali and Xu. “Beyond Worst-case Analysis of Multicore Caching Strategies.” APOCS ’21.

Talk Outline

Case Study: Dynamic Graph Processing via the
Locality-First Strategy

Applicability of the Locality-First Strategy

Other Contributions

Research Mission, Future Work, and Research
Vision

40

Research Mission

My research mission is to study algorithms and software
technology to incorporate cache-friendliness and parallelism

into applications so that they can easily be optimized.

Parallelism Cache-friendliness

Performance

41

Locality-first algorithm engineering

42

Spatial Locality

Problem:
compression often

trades off with
parallelism

Spatial Locality

Locality-First in Problems with Low Spatial
Locality Via Compression

Compression
[Smith97]Sparse problems

+ =

One direction for future work involves improving spatial locality in sparse
problems with compression.

43

Grounding Locality-First in Problems with
Temporal Locality

Prediction about
locality

[LykourisVa18, Rohatgi20]

Goal: improve
performance with

knowledge about locality
in the input

Multicore
cache-replacement

algorithm

+ =

Some knowledge of
future accesses

Another direction involves beyond-worst-case analysis of algorithms by
taking temporal locality into account.

$

Locality-First Algorithm Development on

Alternative Computing Platforms

44
Distributed Systems [Peleg00]

GPUs [Harris13]

$$

Although this talk demonstrated the potential for the locality-first strategy on
multicores, there is significant potential for the approach on other platforms.

The Locality-First Strategy

Research Vision

My research vision is to make design, analysis, and usage of
parallel and cache-efficient algorithms and data structures as

easy as serial computing in a flat memory.

45

Parallelism Cache-friendliness

Performance

Algorithms, frameworks, models, etc. Locality-first is one
method to create these

