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Example Problem: Fast Multicore Graph Processing
One example of a multicore algorithm optimization problem is graph 
processing [EdigerMcRiBa12, KyrolaBlGu12, ShunBl13, MackoMaMaSe15, DhulipalaBlSh19, 

BusatoGrBoBa18, GreenBa16].


Many large graph datasets (e.g. the Twitter graph) can fit into the primary 
memory of a single multicore.
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Breadth-first search Betweenness centralityPageRank

Goal: Make these queries run as fast as possible.

Example graph queries, or algorithms:



Optimizing Programs on Multicores

Today’s multicores are widely accessible to general programmers and 
relatively cheap compared to special-purpose hardware.


Two salient features of multicores are 1) multiple cores and 2) a steep 
(multilevel) cache hierarchy.
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E.g. Intel Haswell

Writing fast code on these 
platforms is notoriously hard 

because of these features 
[Shun15, Schardl16, Kaler20,  

and many others]
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Makes use of  
multiple cores

Makes use of the 
cache hierarchy

Parallelism: the ability to perform 
multiple operations at the same 
time [Flynn72].

Locality: the tendency of 
programs to access the same or 
similar data over time [Denning72, 

Denning05].

Adapting to Multicore Hardware Features

Shared Cache

p p p
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L3

Main Memory

Disk



Real-World Graphs Are Sparse

Social networks Computational biology Road networks
…and others!

Sparse graphs, which have many fewer edges than the total possible 
number of edges, underlie most real-world applications.
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Sparsity disrupts locality due to the presence of many zeroes in the data.



Real-World Graphs Are Also Dynamic
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Furthermore, many real-world sparse graphs are dynamic: they change 
over time.

Updates

Systems for processing dynamic graphs support updates (e.g. edge 
insertions and deletions) and queries (algorithms run on the graph).


Dynamic graphs disrupt locality because of the inherent tradeoff between 
colocating and updating data.



Multicore Optimization Enables  
Fast Graph Queries and Updates

Despite these challenges to locality, high-performance dynamic-graph-
processing systems such as Aspen [DhulipalaShBl19] have taken huge steps 
towards efficient queries and updates.


On 48 cores, Aspen runs the following queries on Twitter (2.4B edges):
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Breadth-first search Betweenness centralityPageRank
0.32s 24.03s 4.72s

Times are human-measurable even with parallelism, 
demonstrating the importance of efficient processing



Query Speed in Dynamic Graph Systems
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Both systems support

parallelization.


Both systems run the 

same algorithms 

by implementing

the Ligra [ShunBl13] 
abstraction.


Surprisingly, in some cases, 
Terrace achieves speedup 
on queries over Ligra 
[ShunBl13], a static graph 
system.

Breadth-first Search PageRank Betweenness 
Centrality

Connected 
Components

Terrace [PandeyWhXuBu21], a dynamic graph processing system, optimizes further 
with a “locality-first design” that takes advantage of graph structure.

Normalized Speedup 
of Terrace Over Aspen  
[DhulipalaShBl19]

[PandeyWhXuBu21] Pandey, Wheatman, Xu, Buluç. “Terrace: A Hierarchical Graph Container for Skewed Dynamic Graphs.” SIGMOD ’21.



Updatability of Dynamic Graph Systems

Terrace

Aspen 
[DhulipalaShBl19]
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Insertion Throughput 
(in millions of edges 
per second)

Batch Size

Edges were generated

using an rMAT

distribution [ChakrabatiZhFa04]


and added in batches

using the provided API.


Terrace achieves up to 

48M inserts per second

and up to 9M deletes per

second. Future work

includes optimizing

batch deletions.

Terrace achieves the best of both worlds in query and update performance 
by taking advantage of locality.



Dynamic Graph Processing and  
the Locality-First Strategy
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Understand locality 
in dynamic graph 

processing

Problem: Dynamic 

graph processing

Exploit locality via data 
structure design for 

graphs

Add parallelism into data 
structures

$$



Two Main Types of Locality

11

Makes use of  
multiple elements 

transferred together

Makes use of efficient 
hierarchical 
accesses

Spatial locality: how many 
accesses an algorithm makes 
makes to nearby data over a short 
period of time [Denning72, Denning05].

Temporal locality: how many 
repeated accesses an algorithm 
makes to the same data over a 
short period of time [Denning72, 

Denning05].



Understanding Locality in Graph Queries
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 Input: graph G, source vertex src
 let Q be a queue
 label src as explored
 Q.enqueue(src)
 while Q is not empty:
   v = Q.dequeue()
   for all edges (v, w) in G.neighbors(v):
     if w not explored:
       label w as explored

Scan

Systems for processing dynamic graphs must support fast graph queries.


Vertex scans, or the processing of a vertex’s incident edges, are a crucial 
step in graph queries [ShunBl13].

Breadth-first search

 Input: graph G
 let triangle_count = 0
 let E = G.edges()
 for (u, v) in E: 
   intersect neighbors of u and v:
     if u and v share a neighbor w:

Scan

Triangle counting
Each neighbor list is scanned at 
most once (no temporal locality), 
so optimize for spatial locality



Graph Representation Determines  
Spatial Locality

Scanning a vertex:

0 0 1
0 1 2 3
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Scan is Θ( |V | )

3

0 1

2

1

Two representations 
of the neighbors of 
vertex v  V:∈
Uncompressed 
stores a whole row 
of the adjacency 
matrix

Sparsity disrupts 
locality with zeroes

Edge list yields efficiency 
savings on queries by 

representing and enabling 
computation on only the 

existing edges

Scan is Θ(degree(v))

2 3
0 1Edge array 

stores neighbors 
explicitly 
[EisenstatGuScSh77]



Updating a vertex:
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Edge array 
stores neighbors 
explicitly 
[EisenstatGuScSh77]

3

0 1

2

Two representations 
of the neighbors of 
vertex v  V:∈
Uncompressed 
stores a whole row 
of the adjacency 
matrix

Tensions Between Spatial Locality  
and Updatability

Update is O(1)

31 2
0 1 2

Shift

(Ordered) update is 
O(degree(v))

Problem: can we choose data structures to support efficient scans and updates?

0 0 1
0 1 2 3

1 0 1 1
0 1 2 3

1

2 3
0 1



Trading Off Query and Update Performance
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Aspen  
(dynamic [DhulipalaBlSh19])

Ligra  
(static [ShunBl13])

Query

Performance

Update Performance

Folk wisdom about graph processing says that query performance trades 
off with update performance [EdigerMcRiBa12, KyrolaBlGu12, ShunBl13, MackoMaMaSe15, 
DhulipalaBlSh19, BusatoGrBoBa18, GreenBa16] due to data representation choices.

To achieve good 
performance, all of the 
systems are parallel.



Terrace: A System for Efficiently Processing 
Dynamic Sparse Graphs

Terrace overcomes the tradeoff between query and update performance 
by using data structures that enhance spatial locality.
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Terrace  
(dynamic [PandeyWhXuBu21] )

Query

Performance

Update Performance

Aspen  
(dynamic [DhulipalaBlSh19])

Ligra  
(static [ShunBl13])

To achieve good 
performance, all of the 
systems are parallel.



Most Graph Systems Separate Neighbor Lists  
for Parallelization
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Existing dynamic graph systems optimize for parallelism first with separate 
per-vertex data structures e.g. trees [DhulipalaBlSh19], adjacency lists 
[EdigerMcRiBa12], and others [KyrolaBlGu12, BusatoGrBoBa18, GreenBa16].

Weakness: Separating the data structures disrupts locality.

Simplified parallelization 
over separate neighbor lists0 1 2

neighbors of 0

…

neighbors of 1

neighbors of 2

…

Vertex IDs
Pointers to edges

Edges



Dynamic Graph Processing and  
the Locality-First Strategy
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Understand locality 
in dynamic graph 

processing

Problem: Dynamic 

graph processing

Exploit locality via data 
structure design for 

graphs

Add parallelism into data 
structures

$$



Enhancing Spatial Locality by  
Colocating Neighbor Lists
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Cache misses between 
vertices while reading all edges 

in any order (e.g. PageRank)

Idea: Colocate neighbor lists in the same data structure, which avoids cache 
misses when traversing edges in order.

neighbors of 0, neighbors of 1, neighbors of 2 …

x

x

Scan

PPCSR [WheatmanXu21]: 
colocating data with 

efficient parallelization

Question: Do these misses actually affect performance, or are they a low-order term?
[WheatmanXu21] Wheatman and Xu. “A Parallel Packed Memory Array to Store Dynamic Graphs.” ALENEX ’21. 

neighbors of 0

neighbors of 1

neighbors of 2

0 1 2 …

…

Vertex IDs
Pointers to edges

Edges

0 1 2 …

…



Dynamic Graphs Are Often Skewed
Real-world dynamic graphs, e.g. social network graphs, often follow a skewed 
(e.g. power-law) distribution with a few high-degree vertices and many low-
degree vertices [BarabasiAl99].

Example power law:

Graph % < 10 neighbors % < 1000 neighbors
Twitter 64.56 99.51

Number of Twitter followers

Frequency

These graphs exhibit 
high degree variance: 

for example, the 
maximum degree in 
the Twitter graph is 

about 3 million 
[BeamerAsPa15]
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Next step: refine the solution with a hierarchical design that takes 
advantage of skewness while maintaining locality as much as possible.
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Problem: High-degree 
vertices slow down updates 
for all vertices in the shared 

data structure

Standalone for 
updatability

Shared for  
spatial locality

Insight: Locality-First Skew-Aware Design
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Shared Packed Memory Array 
[ItaiKoRo81, BenderDeFa00]

Trades locality for 
updatability

Terrace implements the locality-first hierarchical design with cache-friendly 
data structures.

Vertex  
degree

Implementing the Hierarchical Skew-Aware Design

Contiguous for 
spatial locality

Standalone B-tree 
[BayerMc72]



Scan

Insert

Get

In theory, B-trees [BayerMc72] asymptotically dominate Packed Memory Arrays 
(PMA) [ItaiKoRo81, BenderDeFa00] in the classical external-memory model [AggarwalVi88].


Given a cache block size  and input size , B-trees and PMAs take  
block transfers to scan.


B-tree inserts take  transfers, while PMA inserts take .

B N Θ(N/B)

O(logB(N)) O(log2(N))

Selecting Data Structures for Dynamic Graphs
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Problem: Neither data 
structure clearly wins for 
dynamic graphs because 

graphs require fast 
updates and scans 

Solution: use both, 
depending on degree

PMA/B-tree 
runtime

B-tree better

Number of Elements

The theory does not 
capture sequential vs 

random access

PMA better



Exploiting Skewness for Cache-Friendliness
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The locality-first design in Terrace reduces cache misses during graph 
queries.

Query Ligra 
[ShunBl13]

Aspen 
[DhulipalaShBl19]

Terrace 
[PandeyWhXuBu21]

Breadth-first 
Search 3.5M 6.3M 1.1M

PageRank 174M 197M 128M

Static Dynamic

On the 
LiveJournal 

graph

Cache-friendliness translates into 
graph query performance 

Additional optimization: store 
some edges in-place for 

extra spatial locality



Terrace: Applying the Locality-First Strategy to  
Dynamic Graph Processing

In practice, Terrace is about 2x faster on graph query algorithms than 
Aspen while maintaining similar updatability.


Terrace’s cache-friendly design demonstrates the impact of the locality-
first strategy in graph processing.
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Understand locality: 
opportunities for 
spatial locality 


due to  skewness

Problem: Dynamic

graph processing

Exploit spatial locality with 
a cache-friendly skew-

aware data structure

Implementation of Terrace, 
a parallel dynamic-graph-
processing system based 

on the skew-aware design 
[PandeyWhXuBu21]

https://github.com/PASSIONLab/terrace

$$



Talk Outline

Case Study: Dynamic Graph Processing via the 
Locality-First Strategy


Applicability of the Locality-First Strategy 

Other Contributions


Research Mission, Future Work, and Research Vision
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How To Develop Efficient Multicore Algorithms
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To create parallel algorithms and data structures for multicores that are 
theoretically and practically efficient, practitioners should use a 


locality-first strategy.

Understand locality Exploit locality via 
algorithm engineering Add parallelismProblem

$$



Why locality-first for general problems?
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Locality-First Enables  
Easier Algorithm Engineering

The locality-first strategy simplifies writing parallel code by focusing on 
the serial execution first.
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Multithreading

Theory Practice

E.g. Race conditions [FengLe97], 
false sharing [TorrellasLaHe94],  

profiling scalability 
[SchardlKuLeLeLe15].

For example, my coauthors and I implemented a (serial) Packed Memory Array 
[WheatmanXu18] before the parallel version [WheatmanXu21], which Terrace [PandeyWhXuBu21] 
builds on.

[WheatmanXu18] Wheatman and Xu. “Packed Compressed Sparse Row: A Dynamic Graph Representation.” HPEC ’18. 



Spatial Locality Enables Other Types of Parallelism

The locality-first strategy draws inspiration from Cilk’s [FrigoLeRa98] work-first 
principle of minimizing the work in serial, allowing for peak efficiency after 
task parallelization.
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Data-Level Parallelism  
(e.g. SIMD [Flynn72])

e.g. vectorizing the PMA in Terrace is more 
straightforward because it is contiguous

Applying the same operation 
to a set of values



Temporal Locality Offers Multiple Opportunities for 
Performance Improvement

In reality, speedups due to temporal locality are continuous because of the 
multiple levels of the cache hierarchy.
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L1

L2

L3

Main Memory

Disk

Numbers Everyone Should Know  
[Dean09]

0.5ns

7ns

100 ns

25ns (approx.) 
[Intel i7 guide]

10,000,000 ns

My work [Bender et al. 20, LincolnLiLyXu18] touches on cache-oblivious algorithms 
[FrigoLePrRa99], which use all levels of cache asymptotically optimally.

[Bender et al. 20] Bender et al. “Closing the Gap Between Cache-oblivious and Cache-adaptive Analysis.” SPAA ’20.

[LincolnLiLyXu18] Lincoln, Liu, Lynch, Xu.  “Cache-Adaptive Exploration: Experimental Results and Scan-Hiding for Adaptivity.” SPAA 18.



Balancing Parallelism and Cache-Friendliness

The locality-first strategy may be surprising for overall performance 
improvement because locality and parallelism conflict with each other.
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Locality-first ensures that you 
have ample cache-friendliness 
to maintain good performance 

after parallelization

Cache-friendly Parallel

Locality as a currency in 
algorithm engineering: can 

spend some to get parallelism 
[inspired by MIT 6.172, Lecture 1]

Cache-friendly Parallel

Parallelization

For example, Terrace optimizes for locality first and then trades some of it for 
efficient parallelization.



Talk Outline

Case Study: Dynamic Graph Processing via the 
Locality-First Strategy


Applicability of the Locality-First Strategy


Other Contributions 

Research Mission, Future Work, and Research Vision
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HighLow

High

Spatial 
Locality

Temporal Locality

Classification of Contributions
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PPCSR 
[WheatmanXu18, WheatmanXu21]

PHIL [AhrensXuSc18]Terrace 
[PandeyWhXuBu21]

Multicore caching 
[KamaliXu20, KamaliXu21]

Cache adaptivity 
[LincolnLiLyXu18, Bender et al. 20]

Accurate 
prefix sums 
[FraserXuLe20]

Write-optimized skip 
lists [Bender et al. 17]

Included and 
excluded sums 

[XuFrLe21] 

[Bender et al. 17] PODS ’17.

[AhrensXuSc18] IPDPS ’18.

[LincolnLiLyXu18] SPAA ’18.

[WheatmanXu18] HPEC ’18.

[Bender et al. 20] SPAA ’20.

[KamaliXu20] SPAA ’20.

[FraserXuLe20] HPEC ’20.

[KamaliXu21] APOCS ’21.

[WheatmanXu21] ALENEX ’21.

[PandeyWhXuBu21] SIGMOD ’21.

[XuFrLe21] ACDA ’21. 



HighLow

High

Spatial 
Locality

Temporal Locality

Exploring the Locality-First Strategy
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Terrace 
[SIGMOD 21]

Accurate 
prefix sums 
[FraserXuLe20]Vignettes: Multicore caching 

[KamaliXu20, KamaliXu21]



Example Problem: Accurate Prefix Sums

Prefix sums (aka scans) appear in a wide range of applications and have 
been targeted for efficient implementations e.g. Parlaylib [BlellochAnDh20], 
NVIDIA GPU [HarrisSeOw07].
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Floating-point prefix sums underlie applications in scientific computing 
such as summed-area table generation [Crow84] and the fast multipole method 
[GreengardRo85].

{yk =
x0
xk + yk−1

if k = 0
if k ≥ 1.

Output array of 
running sums

Input array of elements



Example: Locality-First in Accurate Prefix Sums
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+ +

+

+ +

+

+

Accuracy

Speed

Compensated 
scan [Kahan85]

Parallel 
scan 

[BlellochAn
Dh20]

Parallel 
accurate 

scan 
[FraserXuLe20]

Understand locality: 
tree summation has


 limited temporal locality,

opportunities for spatial

Problem: Minimize error in fast floating-point prefix sums [Higham93].
Limited machine precision

Tree-like summation 
to reduce error

Exploit locality: 
tree blocking for

spatial locality

+ +

+

$$

[FraserXuLe20] Fraser, Xu, Leiserson. “Work-Efficient Parallel Algorithms for Accurate Floating-Point Prefix Sums.” HPEC ’20. 



Example Problem: Multicore Cache Replacement
One possible concern with locality-first is that locality and parallelism are in 
tension with one another.


For example, every multicore system with shared memory must implement a 
cache replacement policy that decides what to evict when the cache gets full.


Parallelism can disrupt cache-friendliness of cache-replacement algorithms 
when multiple workers contend for space [López-OrtizSa12, KattiRa12]. 
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Shared Cache

p p p



Example: Grounding Locality-First in  
Multicore Cache Replacement

Goal: Theoretically ground the locality-first strategy in multicore cache 
replacement via a new theoretical framework that extends “beyond-worst-
case” analysis to take temporal locality into account [Roughgarden20]
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Multicore Caching 
[López-OrtizSa12]

Worst-case analysis 
[KamaliXu20]

Cyclic analysis  
[KamaliXu21]

Least-Recently-Used 
[SleatorTa84]

Anything else
Grounds the 

empirical superiority 
of LRU due to 

naturally-occurring 
locality [AlbersFaGi02]

[KamaliXu20] Kamali and Xu. “Brief Announcement: Multicore Paging Algorithms Cannot Be Competitive.” SPAA ’20. 

[KamaliXu21] Kamali and Xu. “Beyond Worst-case Analysis of Multicore Caching Strategies.” APOCS ’21.



Talk Outline

Case Study: Dynamic Graph Processing via the 
Locality-First Strategy


Applicability of the Locality-First Strategy


Other Contributions


Research Mission, Future Work, and Research 
Vision
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Research Mission

My research mission is to study algorithms and software 
technology to incorporate cache-friendliness and parallelism 

into applications so that they can easily be optimized.

Parallelism Cache-friendliness

Performance

41

Locality-first algorithm engineering
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Spatial Locality

Problem: 
compression often 

trades off with 
parallelism

Spatial Locality

Locality-First in Problems with Low Spatial 
Locality Via Compression

Compression 
[Smith97]Sparse problems

+ =

One direction for future work involves improving spatial locality in sparse 
problems with compression.
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Grounding Locality-First in Problems with 
Temporal Locality

Prediction about 
locality  

[LykourisVa18, Rohatgi20]

Goal: improve 
performance with 

knowledge about locality  
in the input

Multicore  
cache-replacement 

algorithm

+ =

Some knowledge of 
future accesses

Another direction involves beyond-worst-case analysis of algorithms by 
taking temporal locality into account.

$



Locality-First Algorithm Development on  
Alternative Computing Platforms

44
Distributed Systems [Peleg00]

GPUs [Harris13]

$$

Although this talk demonstrated the potential for the locality-first strategy on 
multicores, there is significant potential for the approach on other platforms.

The Locality-First Strategy



Research Vision

My research vision is to make design, analysis, and usage of 
parallel and cache-efficient algorithms and data structures as 

easy as serial computing in a flat memory.
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Parallelism Cache-friendliness

Performance

Algorithms, frameworks, models, etc. Locality-first is one 
method to create these


