Optimizing Dynamic Graph Processing on Multicores with the Locality-First Strategy

Helen Xu MIT / Lawrence Berkeley National Laboratory <u>https://people.csail.mit.edu/hjxu</u>

Example Problem: Fast Multicore Graph Processing

One example of a multicore algorithm optimization problem is graph processing [EdigerMcRiBa12, KyrolaBlGu12, ShunBl13, MackoMaMaSe15, DhulipalaBlSh19, BusatoGrBoBa18, GreenBa16].

memory of a single multicore.

Example graph queries, or algorithms:

Goal: Make these queries run as fast as possible.

Many large graph datasets (e.g. the Twitter graph) can fit into the primary

Betweenness centrality

Optimizing Programs on Multicores

Today's multicores are **widely accessible** to general programmers and **relatively cheap** compared to special-purpose hardware.

Two salient features of multicores are 1) **multiple cores** and 2) a steep (multilevel) **cache hierarchy**.

Writing fast code on these platforms is **notoriously hard** because of these features [Shun15, Schardl16, Kaler20, and many others]

E.g. Intel Haswell

Adapting to Multicore Hardware Features

Parallelism: the ability to perform multiple operations at the same time [Flynn72].

Locality: the tendency of programs to access the same or similar data over time [Denning72,

Real-World Graphs Are Sparse

Sparse graphs, which have many fewer edges than the total possible number of edges, underlie most real-world applications.

Social networks

Sparsity **disrupts locality** due to the presence of many zeroes in the data.

Computational biology

Road networks

^{...}and others!

Real-World Graphs Are Also Dynamic

Furthermore, many real-world sparse graphs are **dynamic**: they **change** over time.

Systems for processing dynamic graphs support updates (e.g. edge insertions and deletions) and queries (algorithms run on the graph).

colocating and updating data.

- Dynamic graphs disrupt locality because of the inherent tradeoff between

Multicore Optimization Enables Fast Graph Queries and Updates

Despite these challenges to locality, high-performance dynamic-graphprocessing systems such as Aspen [DhulipalaShBI19] have taken huge steps towards **efficient queries and updates**.

On 48 cores, Aspen runs the following queries on Twitter (2.4B edges):

Breadth-first search 0.32s

Times are human-measurable even with parallelism, demonstrating the importance of efficient processing

PageRank 24.03s Betweenness centrality 4.72s

Query Speed in Dynamic Graph Systems Terrace [PandeyWhXuBu21], a dynamic graph processing system, optimizes further with a "locality-first design" that takes advantage of graph structure.

[PandeyWhXuBu21] Pandey, Wheatman, Xu, Buluç. "Terrace: A Hierarchical Graph Container for Skewed Dynamic Graphs." SIGMOD '21. 8

Both systems support parallelization.

Both systems run the same algorithms by implementing the Ligra [ShunBI13] abstraction.

Surprisingly, in some cases, **Terrace achieves speedup** on queries over Ligra [ShunBI13], a static graph system.

Updatability of Dynamic Graph Systems

Terrace achieves the best of both worlds in query and update performance by taking advantage of locality.

Edges were generated using an rMAT distribution [ChakrabatiZhFa04] and added in batches using the provided API.

Terrace achieves up to 48M inserts per second and up to 9M deletes per second. Future work includes optimizing batch deletions.

Dynamic Graph Processing and the Locality-First Strategy

Add **parallelism** into data

Two Main Types of Locality

Spatial locality: how many accesses an algorithm makes makes to **nearby** data over a short period of time [Denning72, Denning05].

Temporal locality: how many repeated accesses an algorithm makes to **the same** data over a short period of time [Denning72,

Denning05].

11

Understanding Locality in Graph Queries

Systems for processing dynamic graphs must support fast graph queries.

Vertex scans, or the **processing of a vertex's incident edges**, are a crucial step in graph queries [ShunBI13].

12

Graph Representation Determines Spatial Locality

Scanning a vertex:

vertex $v \in V$: Uncompressed of the adjacency matrix **Edge array** stores neighbors explicitly 0 J

Tensions Between Spatial Locality and Updatability

Updating a vertex:

Problem: can we choose data structures to support efficient scans and updates?

Trading Off Query and Update Performance

Folk wisdom about graph processing says that **query performance trades off with update performance** [EdigerMcRiBa12, KyrolaBIGu12, ShunBI13, MackoMaMaSe15,

off with update performance [EdigerMcRiBa12, KyrolaBlGu12, ShunBl13, MackoMaMaSe15, DhulipalaBlSh19, BusatoGrBoBa18, GreenBa16] due to data representation choices.

Terrace: A System for Efficiently Processing Dynamic Sparse Graphs

by using data structures that enhance spatial locality.

Terrace overcomes the tradeoff between query and update performance

Most Graph Systems Separate Neighbor Lists for Parallelization

Existing dynamic graph systems optimize for parallelism first with separate per-vertex data structures e.g. trees [DhulipalaBISh19], adjacency lists

[EdigerMcRiBa12], and others [KyrolaBIGu12, BusatoGrBoBa18, GreenBa16].

Vertex IDs Pointers to edges

Edges

Weakness: Separating the data structures **disrupts** locality.

17

Dynamic Graph Processing and the Locality-First Strategy

Problem: Dynamic graph processing

Understand locality in dynamic graph processing

\$

Add **parallelism** into data structures

Enhancing Spatial Locality by **Colocating Neighbor Lists**

Idea: Colocate neighbor lists in the same data structure, which avoids cache **misses** when traversing edges in order.

Question: Do these misses actually affect performance, or are they a low-order term?

[WheatmanXu21] Wheatman and Xu. "A Parallel Packed Memory Array to Store Dynamic Graphs." ALENEX '21.

Dynamic Graphs Are Often Skewed

Real-world dynamic graphs, e.g. social network graphs, often follow a **skewed** (e.g. power-law) distribution with a **few high-degree vertices and many low-degree vertices** [BarabasiAl99].

Example power law:

10 neighbors	% < 1000 nei	ighbors	
64.56	99.51		
Twitter follo		These high de for e maxim the Tw abo [Bea	graphs exhibit gree variance: xample, the um degree in vitter graph is ut 3 million amerAsPa15]

Insight: Locality-First Skew-Aware Design

Next step: refine the solution with a hierarchical design that takes

Problem: High-degree vertices slow down updates for all vertices in the shared data structure

advantage of skewness while maintaining locality as much as possible.

Implementing the Hierarchical Skew-Aware Design

Terrace implements the locality-first hierarchical design with **cache-friendly data structures.**

Selecting Data Structures for Dynamic Graphs

Given a cache block size B and input size N, B-trees and PMAs take $\Theta(N/B)$ block transfers to scan.

B-tree inserts take $O(\log_R(N))$ transfers, while PMA inserts take $O(\log^2(N))$.

In theory, B-trees [BayerMc72] asymptotically dominate Packed Memory Arrays (PMA) [ItaiKoRo81, BenderDeFa00] in the classical external-memory model [AggarwalVi88].

Exploiting Skewness for Cache-Friendliness

The locality-first design in Terrace reduces cache misses during graph

Terrace: Applying the Locality-First Strategy to Dynamic Graph Processing

In practice, Terrace is about 2x faster on graph query algorithms than Aspen while maintaining similar updatability.

Terrace's cache-friendly design demonstrates the impact of the localityfirst strategy in graph processing.

\$

Problem: Dynamic graph processing

Understand locality: opportunities for spatial locality due to **skewness**

Exploit spatial locality with a cache-friendly skew**aware** data structure

Implementation of Terrace, a **parallel** dynamic-graphprocessing system based on the skew-aware design [PandeyWhXuBu21]

https://github.com/PASSIONLab/terrace

Applicability of the Locality-First Strategy

Other Contributions

Talk Outline

Research Mission, Future Work, and Research Vision

How To Develop Efficient Multicore Algorithms

To create parallel algorithms and data structures for multicores that are theoretically and practically efficient, practitioners should use a **locality-first strategy**.

algorithm engineering

Why locality-first for general problems?

Locality-First Enables Easier Algorithm Engineering

The locality-first strategy simplifies writing parallel code by focusing on the serial execution first.

Practice Theory For example, my coauthors and I implemented a (serial) Packed Memory Array [WheatmanXu18] before the parallel version [WheatmanXu21], which Terrace [PandeyWhXuBu21]

builds on.

[WheatmanXu18] Wheatman and Xu. "Packed Compressed Sparse Row: A Dynamic Graph Representation." HPEC '18.

Multithreading

E.g. Race conditions [FengLe97], false sharing [TorrellasLaHe94], profiling scalability [SchardlKuLeLeLe15].

Spatial Locality Enables Other Types of Parallelism

The locality-first strategy draws inspiration from Cilk's [FrigoLeRa98] work-first principle of **minimizing the work in serial**, allowing for peak efficiency after task parallelization.

Temporal Locality Offers Multiple Opportunities for Performance Improvement

In reality, speedups due to temporal locality are **continuous** because of the multiple levels of the cache hierarchy.

My work [Bender et al. 20, LincolnLiLyXu18] touches on cache-oblivious algorithms [FrigoLePrRa99], which use all levels of cache asymptotically optimally.

[Bender et al. 20] Bender et al. "Closing the Gap Between Cache-oblivious and Cache-adaptive Analysis." SPAA '20. [LincolnLiLyXu18] Lincoln, Liu, Lynch, Xu. "Cache-Adaptive Exploration: Experimental Results and Scan-Hiding for Adaptivity." SPAA 18.

Numbers Everyone Should Know

[**Dean09**] **0.5ns** 7ns 25ns (approx.) [Intel i7 guide] 100 ns 35 10,000,000 ns

Balancing Parallelism and Cache-Friendliness

The locality-first strategy may be surprising for overall performance improvement because locality and parallelism conflict with each other.

> Locality as a **currency** in algorithm engineering: can [inspired by MIT 6.172, Lecture 1]

For example, Terrace optimizes for locality first and then trades some of it for efficient parallelization.

Case Study: Dynamic Graph Processing via the Locality-First Strategy

Applicability of the Locality-First Strategy

Other Contributions

Talk Outline

Research Mission, Future Work, and Research Vision

Classification of Contributions

Exploring the Locality-First Strategy

Example Problem: Accurate Prefix Sums

Prefix sums (aka scans) appear in a wide range of applications and have been targeted for efficient implementations e.g. Parlaylib [BlellochAnDh20], NVIDIA GPU [HarrisSeOw07].

Floating-point prefix sums underlie applications in scientific computing such as summed-area table generation [Crow84] and the fast multipole method [GreengardRo85].

Input array of elements

Example: Locality-First in Accurate Prefix Sums

Limited machine precision

Problem: Minimize error in fast floating-point prefix sums [Higham93].

Understand locality:

tree summation has limited temporal locality, opportunities for spatial

[FraserXuLe20] Fraser, Xu, Leiserson. "Work-Efficient Parallel Algorithms for Accurate Floating-Point Prefix Sums." HPEC '20.

Example Problem: Multicore Cache Replacement

One possible concern with locality-first is that locality and parallelism are in **tension** with one another.

For example, every multicore system with shared memory must implement a **cache replacement policy** that decides what to evict when the cache gets full.

Parallelism can **disrupt cache-friendliness** of cache-replacement algorithms when multiple workers contend for space [López-OrtizSa12, KattiRa12].

Example: Grounding Locality-First in Multicore Cache Replacement

Goal: **Theoretically ground** the locality-first strategy in multicore cache replacement via a new theoretical framework that extends "beyond-worst-case" analysis to take **temporal locality** into account [Roughgarden20]

Multicore Caching [López-OrtizSa12]	Worst-
Least-Recently-Used [SleatorTa84]	
Anything else	

[KamaliXu20] Kamali and Xu. "Brief Announcement: Multicore Paging Algorithms Cannot Be Competitive." SPAA '20. [KamaliXu21] Kamali and Xu. "Beyond Worst-case Analysis of Multicore Caching Strategies." APOCS '21.

Case Study: Dynamic Graph Processing via the Locality-First Strategy

Applicability of the Locality-First Strategy

Other Contributions

Talk Outline

Research Mission, Future Work, and Research

Research Mission

My research mission is to study algorithms and software technology to incorporate cache-friendliness and parallelism into applications so that they can easily be optimized.

41

Locality-First in Problems with Low Spatial **Locality Via Compression**

One direction for future work involves improving spatial locality in sparse problems with **compression**.

Sparse problems

+

Grounding Locality-First in Problems with **Temporal Locality**

Another direction involves **beyond-worst-case analysis** of algorithms by taking temporal locality into account.

Multicore cache-replacement algorithm

Some knowledge of **future accesses**

Prediction about locality [LykourisVa18, Rohatgi20]

Goal: improve performance with knowledge about locality in the input

Locality-First Algorithm Development on Alternative Computing Platforms

Although this talk demonstrated the potential for the locality-first strategy on multicores, there is significant potential for the approach on **other platforms**.

Research Vision

My research vision is to make design, analysis, and usage of parallel and cache-efficient algorithms and data structures as easy as serial computing in a flat memory.

