
Optimizing Search Layouts in Packed Memory Arrays

Brian Wheatman∗ Randal Burns∗ Aydın Buluç† Helen Xu†

Abstract

This paper introduces Search-optimized Packed
Memory Arrays (SPMAs), a collection of data struc-
tures based on Packed Memory Arrays (PMAs) that
address suboptimal search via cache-optimized search
layouts. Traditionally, PMAs and B-trees have trade-
offs between searches/inserts and scans: B-trees were
faster for searches and inserts, while PMAs were faster
for scans.

Our empirical evaluation shows that SPMAs over-
come this tradeoff for unsorted input distributions: on
average, SPMAs are faster than B+-trees (a variant of
B-trees optimized for scans) on all major operations.
We generated datasets and search/insert workloads
from the Yahoo! Cloud Serving Benchmark (YCSB) and
found that SPMAs are about 2× faster than B+-trees
regardless of the ratio of searches to inserts. On uni-
form random inputs, SPMAs are on average between
1.3×−2.3× faster than B+-trees on all operations. Fi-
nally, we vary the amount of sortedness in the inputs
to stress the worst-case insert distribution in the PMA.
We find that the worst-case B+-tree insertion through-
put is about 1.5× faster than the worst-case PMA in-
sertion throughput. However, the worst-case input for
the PMA is sorted and highly unlikely to appear natu-
rally in practice. The SPMAs maintain higher insertion
throughput than the B+-tree when the input is up to
25% sorted.

1 Introduction

The Packed Memory Array (PMA) is a cache-optimized
dynamic data structure that stores all of its elements
contiguously in memory. Although classical cache-
friendly data structures such as B-trees [4] asymptoti-
cally match or beat PMAs on all operations, in prac-
tice, PMAs support ordered iteration (i.e., scans), a
key component of range queries and maps, up to 3×
faster than pointer-based structures such as trees be-
cause the PMA collocates all of its data [30]. Further-
more, previous work shows that PMAs support updates

∗Department of Computer Science, Johns Hopkins University.

{wheatman, randal}@cs.jhu.edu.
†Computational Research Division, Lawrence Berkeley Na-

tional Laboratory. {abuluc, hjxu}@lbl.gov.

a) PMA

b) SPMA
Figure 1: Search structure in PMAs and SPMAs. The
yellow boxes represent PMA leaves, or chunks of size
O(lg(n)). The blue boxes represent the leaf heads, or
the first element in each leaf. The lines represent the
implicit search tree that the PMA defines. SPMAs
collocate the PMA leaf heads in a separate array.

empirically much faster than the theoretical prediction
suggests [36]. Due to its cache-friendliness, the PMA
appears in many applications such as graph process-
ing [15, 30, 35, 36], particle simulations [16], and com-
puter graphics [34].

A main weakness of Packed Memory Arrays
(PMAs) [6, 21] is their search cost. Given a cache-
line size of B elements [2], searching a PMA with n
elements takes O(lg(n)) cache-line transfers. In con-
trast, B-trees [4] (or other hierarchical cache-friendly
data structures) support searches asymptotically faster
in O(logB(n)) transfers. Furthermore, PMA searches
are a key component of PMA updates (inserts/deletes),
so PMA updates take Ω(lg(n)) transfers as opposed to
B-tree updates, which take O(logB(n)) transfers.

The PMA’s cache-friendliness results in its subopti-
mal searches. The PMA stores elements with spaces in
between them in a single contiguous array for efficient
updates and moves elements around upon an insert.
This array is implicitly broken up into PMA leaves,
or blocks of size Θ(lg(n)). Searching for an element
involves a binary search on the first cells of each leaf,
called leaf heads, followed by a scan of the leaf that the
target element might reside in. The PMA maintains the
invariant that the leaf heads are nonempty. There are
O(n/ lg(n)) leaves, so the height of the binary search
is O(lg(n)). Unfortunately, as shown in Figure 1(a),
most of the leaf heads are far apart, so most steps of
the binary search incur a cache miss.

In practice, optimizing PMA searches can substan-
tially improve PMA updates. The cost of PMA searches
empirically makes up a large fraction of the cost of PMA

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Data structure Search Insert & delete Range query

PMA [6, 21] O(lg(n/M)) O(lg(n/M) + (lg2(n))/B)† O(lg(n/M) + k/B)

SPMA-Linear O(lg(n/(MB))) O(lg(n/(MB)) + (lg2(n))/B)† O(lg(n/(MB)) + k/B)

SPMA-Eytzinger O(lg(n/M)) O(lg(n/M) + (lg2(n))/B)† O(lg(n/M) + k/B)

SPMA-Btree O(logB(n/M)) O(logB(n/M) + (lg2(n))/B)† O(logB(n/M) + k/B)
B-tree [4] O(logB(n/M)) O(logB(n/M)) O(logB(n/M) + k/B)

Table 1: PMA, SPMA, and B-tree bounds. Let B denote the cache-line size [2], let M denote the cache size [2],
and let k denote the number of elements returned in a range query. Bounds with † are amortized.

0 20 40 60 80 100

2

4

6
·106

Percentage of inserts

T
h
ro
u
gh

p
u
t
(o
p
er
at
io
n
s/
s)

PMA SPMA-L

SPMA-E SPMA-B

B+ tree

Figure 2: Throughput of serial searches/inserts on
mixed workloads from YCSB.

updates. For example, on uniform random inputs, PMA
search time accounts for about 50% of the total time
when inserting 1 million elements and over 75% of the
total time when inserting 100 million elements.

This work presents Search-optimized PMAs
(SPMAs), a new collection of data layouts for PMAs
that improve the cache-friendliness of PMA searches
and, by extension, PMA updates. As shown in Fig-
ure 1(b), the main idea behind SPMAs is to collocate
the PMA leaf heads in a separate array and arrange
them in a more efficient order. The two-array SPMA
structure is inspired by previous work [5–8, 32]. This
work generalizes the design to arbitrary leaf head orders
and explores both theoretically and practically efficient
search layouts for the leaf head array.

Specifically, we introduce three examples of SP-
MAs: SPMA-Linear, SPMA-Eytzinger, and SPMA-
Btree. SPMA-Eytzinger matches the asymptotics of
traditional PMAs but performs much better in prac-
tice because it is optimized to take advantage of mod-
ern CPU hardware features such as prefetching and the
branch predictor. SPMA-Linear reduces the theoreti-
cal search cost of PMAs by a low-order term. Finally,
SPMA-Btree decreases the theoretical search cost of
PMAs by a factor of O(lg(B)) to match that of B-trees.
Table 1 summarizes the bounds [5,6,9,37–39] for PMAs,
SPMAs, and B-trees in the Ideal-Cache model [18] de-
tailed in Section 2.

105 106 107 108 109
0

2

4

6

8
·108

Number of elements in data structure
T
h
ro
u
g
h
p
u
t
(q
u
er
ie
s/
s)

PMA

SPMA-L

SPMA-E

SPMA-B

B+ Tree

Figure 3: Throughput of simultaneous searches.

To empirically evaluate the SPMAs, we compare
them to a B+-tree [13] from the TLX library [11]
and a traditional PMA on the search, insert, and
scan operations. The plots in this section use SPMA-
L, SPMA-E, and SPMA-B to refer to SPMA-Linear,
SPMA-Eytzinger, and SPMA-Btree respectively. All
data structure implementations considered in this paper
support read-only operations (i.e., queries and scans)
in parallel, but are not thread-safe for writes. The
search optimizations in this paper are orthogonal to
prior work on concurrent PMAs, so the SPMAs can be
made thread-safe for writes using techniques described
in previous work [36]. In this paper, we evaluate the
throughput of multiple simultaneous read-only opera-
tions and serial write operations.

The empirical evaluation shows that SPMAs over-
come the traditional tradeoff between search/insert and
scan performance on unsorted inputs: on average, they
are faster than B+-trees for all major operations.

Figure 2 shows that the SPMAs are about 2× faster
than B+-trees on an application benchmark of mixed
search/insert workloads from the widely used Yahoo!
Cloud Serving Benchmark (YCSB) [14]. The evaluation
shows that SPMAs are faster than B+-trees on mixed
workloads regardless of the ratio of searches to inserts.
Section 5 also demonstrates that SPMAs are around
2.4× faster than B+-trees on mixed range query/insert
workloads from YCSB. We ran all benchmarks from
YCSB serially for consistency since most contain writes.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Furthermore, on uniform random inputs, SPMAs
about 1.7× faster than B+-trees for searches, about
1.4× faster for inserts, about 2.3× faster for scans, and
about 1.3× faster for range queries. Figure 3 shows
that SPMAs improve search performance by up to 7×
compared to traditional PMAs.

Section 5 also evaluates the PMA, SPMAs, and
B+-tree on more structured inputs with ordered in-
serts and shows that the worst-case B+-tree insertion
throughput is about 1.5× faster than the worst-case
PMA insertion throughput. Sorted inserts are the worst
case for PMAs because they maximize the number of
element moves necessary to maintain the spaces spread
out through the underlying array. However, the SP-
MAs match or exceed the B+-tree’s insertion through-
put when the input is up to 25% sorted.

Specifically, our contributions are as follows:

• The high-level design of SPMAs, which improve the
cache-friendliness of PMA searches.

• The design and analysis of three variants of
SPMAs: SPMA-Linear, SPMA-Eytzinger, and
SPMA-Btree.

• An implementation of the three SPMAs in C++.

• An empirical evaluation of the three SPMAs com-
pared to PMAs and B+-trees.

Map: The rest of this paper is organized as follows. Sec-
tion 2 provides background about the PMA and de-
scribes the salient features of modern computer architec-
tures that enable the performance improvements in SP-
MAs. Section 3 describes the high-level SPMA design,
and Section 4 introduces and analyzes SPMA-Linear,
SPMA-Eytzinger, and SPMA-Btree. Section 5 empiri-
cally evaluates the SPMAs on search, insert, scan, and
range query, and shows that they improve upon PMAs
and overcome traditional empirical tradeoffs between
B+-trees and PMAs. Section 6 provides concluding re-
marks.

2 Background

We review the Ideal-Cache model [18], a variant of
the classical external-memory model [2], which we will
use to analyze data structure operations throughout
the paper. Next, we present details about the Packed
Memory Array, including a description of its operations.

We then summarize relevant features of a modern
processor architecture that SPMAs take advantage of
to improve overall performance. Specifically, we will
discuss the latency of fetches between CPU and RAM
and how processors alleviate latency issues with caches,

prefetching, and pipelining. This discussion is inspired
by a similar summary by Khuong and Morin [23].

Analysis method: The Ideal-Cache model contains
two levels of memory: a small bounded-size cache of size
M , and an unbounded-size memory. Any data must be
brought to the cache first before it is processed. Data
is transferred in blocks of size B between the cache and
the memory, and transfers have unit cost. The cost
of algorithms is measured in terms of transfers between
cache and memory. The Ideal-Cache model includes the
tall-cache assumption : that is, it assumes the cache
size M = Ω(B2).

Packed Memory Arrays: The PMA is a dynamic
dictionary data structure that stores n elements in
sorted order in a Θ(n)-sized array with empty cells in-
terspersed between elements in order to support efficient
updates [6, 21]. PMAs support scans of k elements in
O(k/B) transfers.

In this paper, we will consider the following major
data structure operations:

• search(x): returns a pointer to the smallest ele-
ment that is at least x in the PMA.

• insert(x)/ delete(x): inserts/deletes element x
into/from the PMA.

• range map(start, end, f): applies the function
f to all elements in the range [start, end).

In this paper, we will use the more popular term
“range query” instead of “range map,”, but range maps
are more general and are used to implement range
queries.

As mentioned in Section 1, searching a PMA takes
O(lg(n)) cache-line transfers because it involves a binary
search on the O(n) leaf heads. The top O(lg(M))
levels of the binary search are stored in the cache,
so the total number of transfers in a PMA search is
O(lg(n) − lg(M)) = O(lg(n/M)). Range maps can be
implemented with a search for the start element and a
scan from that point.

Although search is a key subroutine in PMA insert
(and delete), it is asymptotically a low-order term in
the theoretical insert cost. Suppose we are inserting
an element x into a PMA. The insert operation first
performs a search for x, which has O(lg(n/M)) cost. If
x is not in the PMA, the insert then places x in the
target leaf discovered by the search. After the place
step, the PMA counts the number of elements in the
leaf that was inserted into to check if it is “too full.”
If the leaf is too full, the PMA may shuffle elements
around in a “redistribute” to maintain enough empty

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

spaces in the PMA. The amortized cost of counting and
redistributing is O((lg2(n))/B), resulting in the PMA
insert bound of O(lg(n/M) + (lg2(n))/B) [6, 21]. B-
trees asymptotically beat PMAs on inserts and support
updates in O(logB(n/M)) transfers.

Modern computer architecture: At a high level, a
modern multicore computer is made up of a processor
(CPU) connected to a random-access memory (RAM).
If the CPU requires the contents of RAM, the main
bottleneck is often the latency of memory transfers,
which can take hundreds of cycles.

To alleviate the cost of reading data from RAM,
modern architectures contain steep cache hierarchies,
or multiple levels of cache, between the CPU and RAM.
When a CPU reads data from RAM, the RAM moves
a cache line , or a contiguous block of data (often 64
bytes), to intermediate caches between the CPU and
RAM. Specifically, the cache-line size parameter B in
the Ideal-Cache model captures how well algorithms
take advantage of cache-line transfers.

To further reduce the latency of bringing data from
RAM to CPU, modern processors also contain hard-
ware prefetchers, which attempt to predict future
memory accesses and pre-load the data before the CPU
accesses it [27]. Successful prefetching ensures that the
data is in cache when the program needs it. Taking full
advantage of prefetching requires collocating as much
data as possible because modern prefetchers can only
guess simple access patterns [23].

Finally, CPUs improve throughput by pipelin-
ing instructions rather than performing them one at
a time [19]. Each instruction is composed of several
discrete stages. The CPU arranges the instructions
in a pipeline so that multiple instructions at different
stages are executed at the same time. [31] Since effective
pipelining depends on the CPU knowing which instruc-
tion to fetch and perform next, modern processors also
include branch predictors that guess which instruc-
tions come next after a conditional jump (e.g., an if
statement) that changes the flow of execution. Branch
prediction works best when the conditions are highly
predictable, e.g. in simple loops.

3 Search-optimized PMAs

This section motivates the cache-friendliness of Search-
optimized PMAs (SPMAs) and formalizes their design.
At a high level, SPMAs improve the cache-friendliness of
PMAs by separating the PMA into two arrays: one for
the leaf heads, and one for the rest of the data. The
SPMA design improves cache utilization by allowing
larger SPMAs to fit their leaf heads into cache. We
present a framework for creating SPMAs by defining

the order of the leaf heads. Finally, we show to how
analyze the search and insert operations in an SPMA
based on the leaf head order. For clarity, this section
focuses on inserts because deletes are symmetric.

SPMA design and benefits: More formally, SPMAs
divide the traditional single array of a PMA into two
arrays: a leaf head array that stores the leaf heads,
and a data array that stores the rest of the PMA.
Each of the arrays is stored contiguously. Figure 1(b)
illustrates the high-level structure of an SPMA.

Collocating the leaf heads improves the PMA’s
cache-friendliness in two main ways. First, the leaf head
array is much smaller than the rest of the PMA (there
are O(n/ lg(n)) leaf heads in a PMA with n elements),
which enables it to fit in cache even as n grows larger
than the cache size. Furthermore, the leaf head array
puts the relevant elements in the search closer together,
so that each cache-line fetch is likely to contain a larger
fraction of elements along the search path.

SPMA specification: To define an SPMA, one needs
to specify a mapping called leaf to head between the
PMA leaves and the indices in the leaf head array. The
mapping is a function that defines the search layout ,
or the order of elements in the leaf head array that is
used during a search or insert. For example, the simplest
mapping is the identity (i.e., the leaf index is the same as
the leaf head index), which underlies SPMA-Linear. As
we shall see, SPMAs may change the mapping from the
identity to a more complex function in order to enable
more efficient searches. For example, SPMA-Eytzinger
stores the leaf heads in “Eytzinger order,” and SPMA-
Btree stores the leaf heads in “B-tree order.”

Searching an SPMA: Just as in a PMA, searching
an SPMA takes two steps: (1) finding the correct leaf
that the target element resides in, and (2) a search of
that leaf. Step (1) involves performing a search in the
leaf head array based on the search layout. Since step
(2) is the same as in a traditional PMA and a low-order
term, the main factor in an SPMA search is the cost of
finding the right leaf.

Inserting in an SPMA: Inserting into an SPMA
has the same steps as inserting into a PMA described
in Section 2:

1. A search to find the leaf to insert the target element
into,

2. A place to put the element in sorted order, and

3. A “redistribute” to ensure that there are enough
empty spaces throughout the PMA.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

7 8 9 10 11 12 130 1 2 3 4 5 6 14a) Linear order

b) Eytzinger order 0 2 4 6 8 10 127 3 11 1 5 9 13 14

5 6 8 9 10 12 133 7 11 0 1 2 4 14c) B-tree order

0

1

2 4

5

6

3

8

9

10 12

13

14

11

7

Implicit binary
search tree

Figure 4: Mappings used in the SPMAs. The numbers in the cells represent the leaf index, and the examples
illustrate the ordering of the leaf heads in the leaf head array. In this example, B = 3 for the B-tree order. The
larger boxes around several cells in B-tree order illustrate the blocking of elements.

Placing the element is trivial once we have found the
correct leaf to insert into, so the focus of the analysis
is on redistributes. A redistribute takes as input a
region of the PMA, or a nonempty set R of contiguous
leaves, and spreads elements evenly amongst the leaves
in the region. Redistributing a region of |R| leaves in
a PMA with n elements takes O((|R| lg(n))/B) cache-
line transfers, since the leaves are stored contiguously
and each leaf has O(lg(n)) cells.

Showing that an SPMA maintains the PMA’s in-
sertion bound is equivalent to showing that gathering
the leaf heads for the leaves in a region incurs no addi-
tional asymptotic cost over the search and redistribute
steps. Given a region R, let G(R) be the number
of transfers required to gather the leaf heads of the
leaves in R in an SPMA. Given a SPMA with n el-
ements with search cost Sn, it suffices to show that
G(R) = O(max{Sn, (|R| lg(n))/B}).

4 Specific search layouts in SPMAs

This section introduces three examples of SPMAs:
SPMA-Linear, SPMA-Eytzinger, and SPMA-Btree.
The choice of search layouts in this section is inspired by
previous studies of static array layouts for comparison-
based searching [1, 23].

We demonstrate that these SPMAs maintain or im-
prove upon traditional PMA bounds using the analysis
framework presented in Section 3. The proofs in this
section use the Ideal-Cache model defined in Section 2.

This section explains the empirical search perfor-
mance of the different layouts based on both their
asymptotic bounds as well as their usage of hardware
features. All of the SPMAs considered in this paper
match the PMA’s asymptotic scan performance. We

will omit proofs of scan performance because they di-
rectly follow from efficient gathering of leaf heads, which
we will show in the proofs of insert performance.

SPMA-Linear: The most straightforward SPMA is
SPMA-Linear , which collocates the leaf heads in the
order that they appeared in the PMA. The SPMA map-
ping between leaf indices to leaf heads is the identity.
Searching in SPMA-Linear is simply a binary search on
the leaf head array followed by a scan of the target leaf.
Gathering the leaf heads during a redistribute does not
incur any additional asymptotic cost, since it just in-
volves a scan through the relevant part of the leaf head
array. Figure 4(a) illustrates an example of a leaf head
array in SPMA-Linear.

Lemma 4.1. SPMA-Linear supports searches in
O(lg(n/(MB))) transfers and inserts in amortized
O(lg(n/(MB)) + (lg2(n))/B)transfers.

Proof. The height of the binary search is O(lg(n)), but
when performing repeated searches, the top O(lg(M))
(most accessed) levels of the search are cached and do
not incur additional transfers. Furthermore, the last
O(lg(B)) levels of the search only occur in a single
cache line, so they do not require additional transfers.
Therefore, searches take O(lg(n) − lg(M) − lg(B)) =
O(lg(n/(MB))) transfers. The insert bound follows
directly from the search bound.

Although lg(B) is a lower-order term, it signif-
icantly improves the practical search performance of
SPMA-Linear compared to a traditional PMA by de-
creasing the number of cache misses.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

SPMA-Eytzinger: The next SPMA we study,
SPMA-Eytzinger , arranges the leaf heads in
Eytzinger order, or breadth-first order. This layout
first appeared in the 1500s in the context of genealog-
ical trees [17], but was more recently adapted as an
implementation of binary heaps [40]. More formally, a
sorted array in Eytzinger order stores the root of the
implicit search tree at index 0 and the values of the
left and right children of the node at index i at indices
2i+1 and 2i+2, respectively. Figure 4(b) presents an
example of a leaf head array in SPMA-Eytzinger.

Searching in SPMA-Eytzinger starts at the begin-
ning of the leaf head array and skips forward to the next
level of the search at each step. To insert an element in
SPMA-Eytzinger, we perform arithmetic to convert the
leaf head index from Eytzinger order to linear order to
find the target leaf in the data array.

SPMA-Eytzinger empirically performs much bet-
ter than both the PMA and SPMA-Linear because its
access pattern makes better use of the branch predic-
tor [23]. For example, let us consider 8-byte elements
and a system with 64-byte cache lines. The location of
the next level of the binary search is within a range of
16 bytes because Eytzinger order places siblings next to
each other. With these parameters, the machine can ac-
curately predict the location of the next three levels of
the search because each cache line contains 8 elements,
which is enough to hold all possible branches at the
next three levels. Therefore, the machine is very likely
to fetch the next correct bytes regardless of which way
the branch predictor chooses.

Analyzing SPMA-Eytzinger: We will show that
SPMA-Eytzinger theoretically matches the PMA.

Lemma 4.2. SPMA-Eytzinger supports searches in
O(lg(n/M)) cache-line transfers.

Proof. The height of the search is O(lg(n)) and the
top O(lg(M)) levels of the search are held in cache
for a total search cost of O(lg(n/M)) transfers. The
first cache line in the leaf head array holds the heads
for the first O(lg(B)) levels. However, the first cache
line does not reduce the asymptotic cost of the search
because the top levels of the search are already cached.
Furthermore, the mapping of leaf to head takes no
additional cache-line transfers because generating the
index in Eytzinger order from linear order only requires
arithmetic operations.

Since gathering leaf heads for a region in SPMA-
Eytzinger is more complicated than in a standard PMA,
we show that storing the leaf heads in Eytzinger order
does not asymptotically increase the insert cost.

Lemma 4.3. SPMA-Eytzinger supports inserts in
amortized O(lg(n/M) + (lg2(n))/B) transfers.

Proof. We will show that accessing the leaf heads for a
scan of a region R (with |R| leaves) in SPMA-Eytzinger
does not affect the asymptotic cost of inserts. We
proceed by case analysis.

Case 1: B = o(lg(n)). In this case, scanning over
the leaf heads incurs asymptotically no more transfers
over the cost to perform the scan over the region. The
scan over R reads O(|R| lg(n)) cells in Θ((|R| lg(n))/B)
transfers. Since B = o(lg(n)), Θ((|R| lg(n))/B) =
Ω(|R|), so the cost to read the leaf heads is bounded
above by the cost to read the remaining cells, even if
each leaf head incurs an additional transfer to read.

Case 2: B = Ω(lg(n)). In this case, scanning over
the leaf heads incurs no more than an additive O(lg(n))
transfers. When the heads are stored in Eytzinger
order, each level of the implicit binary tree can be
traversed cache-efficiently since they are stored in order.
Therefore, the only additional transfers that SPMA-
Eytzinger incurs are the misses to bring in the first leaf
head at each level of the tree, which is bounded above by
O(lg(n)). Due to the tall-cache assumption, the cache
has Ω(B) lines, which in this case is also Ω(lg(n)) lines.
Therefore, the cache can hold a line for each of the
O(lg(n)) levels of the implicit search tree for efficient
traversal during the scan.

SPMA-Btree: Finally, we introduce SPMA-Btree ,
which asymptotically improves the search performance
of PMAs to match B-trees. SPMA-Btree arranges
the leaf heads in B-tree order, or an extension of
Eytzinger order from 2-way branching to (B + 1)-way
branching [23]. Instead of storing each element as a node
in the search tree, B-tree order stores elements in blocks
of size B. Those blocks are stored as nodes in a search
tree and arranged in Eytzinger order. That is, each
block has B elements and represents a node with B+1
children. B-tree order was first introduced for heaps [22,
24, 29] and was later adapted for comparison-based
searching [23]. Furthermore, Raman [32] proposed using
a traditional B-tree layout (without Eytzinger order)
for storing PMA leaf heads. Figure 4(c) illustrates
an example of a leaf head array stored in B-tree with
Eytzinger order.

Querying an element in SPMA-Btree involves a
search of height O(logB(n)) on the blocks of leaf heads
defined by the mapping. Just as in SPMA-Eytzinger,
an insert includes arithmetic to convert the leaf head
index from B-tree order to the original linear order to
find the target leaf.

Lemma 4.4. SPMA-Btree supports searches in

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

O(logB(n/M)) transfers and inserts in amortized
O(logB(n/M) + (lg2(n))/B) transfers.

Proof. B-tree order asymptotically reduces the cost of
searches from O(lg(n/M)) transfers to O(logB(n/M))
transfers due to the layout of the leaf head array.
The B-tree mapping places B pivots on each cache
line for a total search height of O(logB(n)). The top
O(logB(M)) levels are stored in cache for a total search
cost of O(logB(n/M)) transfers. The insert bound
follows directly from the search bound and the proof
of Lemma 4.3.

5 Evaluation

This section shows that despite the theoretical predic-
tion, SPMAs empirically outperform B+-trees on all
operations on unsorted inputs due to the PMA’s cache-
friendliness.

SPMAs are about 2× faster than B+-trees on mixed
search/insert workloads and about 2.4× faster than B+-
trees on mixed range query/insert workloads from the
Yahoo! Cloud Serving Benchmark (YCSB) [14]. As we
shall see, the SPMAs are robust to the skewed Zip-
fian [12,28] distribution present in the YCSB workloads.

Additionally, on uniform inputs, SPMAs are on
average 1.7× faster on parallel searches, 1.4× faster on
inserts, 2.3× faster on parallel scans, and 1.3× faster on
parallel range queries when compared to B+-trees.

On more structured inputs with some sorted inser-
tions, we expect B+-trees to have the advantage on in-
sertions because sorted inserts are the worst case for
the PMA [10]. We find that the worst-case insertion
throughput for B+-trees is about 1.5× faster than the
worst-case insertion throughput for the SPMAs. How-
ever, the SPMAs match or outperform the B+-tree on
insertions when the input is up to 25% sorted.

The plots in this section use SPMA-L, SPMA-
E, and SPMA-B to refer to SPMA-Linear, SPMA-
Eytzinger, and SPMA-Btree, respectively.

We focus on the case of insertions for clarity, but
our experiments show that deletions and insertions have
similar performance.

Systems setup: We implemented the PMA, SPMA-
Linear, SPMA-Eytzinger, and SPMA-Btree as a C++ li-
brary that supports the search, update, and scan oper-
ations. As mentioned in Section 1, all data structures
considered in this paper support simultaneous read-only
operations (i.e., searches, range queries, and scans), but
currently support a single writer at a time. Therefore,
we run all operations in parallel except for inserts. We
implemented range queries with a search and then a
scan from that point. We set the B = 16 in SPMA-

Btree, but tested with B = 4 and B = 8 as well
and found similar results. We implemented a parallel
scan using Cilk [20] and the Tapir [33] branch of the
LLVM [25,26] compiler (version 12).

We used the single-threaded B+-tree [13] from the
TLX library [11] as a baseline. The B+-tree is a variant
of B-trees with all elements at the leaves, which enables
faster scans than traditional B-trees [13].

We ran all data structures as key stores (i.e. without
values) with 64-bit keys.

All experiments were run on a c5.metal 48-core
2-way hyper-threaded Intel® Xeon® Platinum 8275CL
CPU @ 3.00GHz with 189 GB of memory from AWS [3].
Across all of the cores, the c5.metal contains 1.5MiB of
L1 cache, 48MiB of L2 cache, and 71.5MiB of L3 cache.
For each experiment, we took the median of 5 trials.

YCSB experimental setup: We evaluate all data
structures on mixed query/insert workloads from
YCSB [14], a popular application benchmark for data
stores. Tests in YCSB have two phases: a load and run
phase. The load phase generates a number of elements
from some distribution to operate on in the run phase.
For the load phase, we generated 108 elements from a
Zipfian distribution using YCSB. We then tested two
types of run phases: search/insert workloads, and range
query/insert workloads. For the search/insert work-
loads, we generated 108 total operations made up of
searches and inserts. Specifically, we modified workload
A from the examples [41] to generate insertions instead
of updates because updates are simply a search in key-
only mode. We then varied the ratio of searches to
inserts. For the range query/insert workloads, we used
workload E from the examples [41] to generate work-
loads of 108 operations with 95% range queries and 5%
inserts. We varied the size of the range queries by chang-
ing the max scan parameter in YCSB, which determines
the maximum number of elements in each range query.
Each range query first searches for some element x and
then requests a uniform random number k ≤ max scan

of subsequent elements (in sorted order). We run all
YCSB experiments serially because most include writes.

YCSB searches and inserts: Figure 2 and Table 2
demonstrate that SPMAs are about 2× faster than B+-
trees and 3× faster than traditional PMAs on mixed
search/insert workloads from YCSB. As detailed in Sec-
tion 4, SPMA-Eytzinger performs much better than the
theory predicts because it takes advantage of prefetch-
ing and branch prediction, which are not accounted for
in the Ideal-Cache model. Although SPMA-Eytzinger is
worse theoretically than both SPMA-Linear and SPMA-
Btree, SPMA-Eytzinger is always faster than SPMA-

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

PMA SPMA-Linear SPMA-Eytzinger SPMA-Btree B+-tree

% inserts Throughput Throughput SU Throughput SU Throughput SU Throughput SU

0 1.1E+6 2.3E+6 2.1 3.8E+6 3.6 3.6E+6 3.4 1.8E+6 1.7

20 1.0E+6 2.1E+6 2.1 3.4E+6 3.4 3.3E+6 3.2 1.6E+6 1.6

40 9.8E+5 2.0E+6 2.0 3.2E+6 3.2 3.0E+6 3.1 1.5E+6 1.5
60 9.1E+5 1.8E+6 2.0 2.8E+6 3.0 2.7E+6 3.0 1.3E+6 1.4

80 8.6E+5 1.7E+6 2.0 2.6E+6 3.0 2.5E+6 2.9 1.2E+6 1.4

100 8.3E+5 1.6E+6 1.9 2.4E+6 2.9 2.3E+6 2.8 1.1E+6 1.4

Table 2: Throughput (in operations/second) of mixed search/insert workloads from YCSB. SU denotes the
speedup over the traditional PMA.

PMA SPMA-Linear SPMA-Eytzinger SPMA-Btree B+-tree

Max scan length Throughput Throughput SU Throughput SU Throughput SU Throughput SU

10 9.74E+05 1.93E+06 2.0 3.24E+06 3.3 3.14E+06 3.2 1.56E+06 1.6

100 8.88E+05 1.48E+06 1.7 2.11E+06 2.4 1.98E+06 2.2 1.06E+06 1.2

1000 4.84E+05 6.19E+05 1.3 6.94E+05 1.4 6.45E+05 1.3 2.67E+05 0.6
10000 8.52E+04 9.52E+04 1.1 1.02E+05 1.2 9.00E+04 1.1 3.10E+04 0.4

Table 3: Throughput (in operations/second) of mixed range query/insert workloads from YCSB. SU denotes the
speedup over the traditional PMA.

101 102 103 104
104

105

106

Maximum range query length

T
h
ro
u
gh

p
u
t
(o
p
er
at
io
n
s/
s)

PMA SPMA-L

SPMA-E SPMA-B

B+-tree

Figure 5: Throughput of serial range queries/inserts
from YCSB.

Linear and similar to SPMA-Btree. The SPMAs are
faster than the B+-tree on both searches and inserts, so
they are faster on the mixed workloads. Although the
workloads from YCSB follow a skewed (Zipfian) distri-
bution, the YCSB generator outputs elements randomly
within the distribution. The worst-case insertion work-
load for the PMA depends only on the sortedness of the
input and not the closeness of the elements, so SPMAs
outperform B+-trees on YCSB workloads regardless of
the fraction of searches to inserts.

YCSB range queries and inserts: Figure 5 and Ta-
ble 3 show that SPMAs are about 2.4× faster than
B+-trees and about 1.5× faster than PMAs for range
queries. SPMAs overcome the traditional tradeoff be-
tween searches and scans for B-trees and PMAs for im-

proved range query performance regardless of the length
of the range query. A range query in YCSB is defined by
an element x and a number of elements k to return start-
ing from x (in sorted order). Performing a range query
takes two steps: 1) a point query to find the smallest
element that is at least x, and 2) a scan from x over the
(sorted) data structure over the next k elements. B+-
trees are faster to search than PMAs, whereas PMAs are
faster to scan than B+-trees. When k is small (≤ 100),
B+-trees are faster than PMAs for range queries be-
cause the cost is dominated by the search. In contrast,
when k is large (> 100), the cost of the scan dominates
the cost of the range query, and the PMA is faster for
range queries. PMAs and SPMAs converge when k is
large because the search cost is small compared to the
scan cost.

Experimental design for uniform random and
sorted inputs: We also compare all data structures on
their update, search, scan, and range query performance
on uniform random inputs. For each experiment, let n
be the number of elements in the data structure. To
measure insert performance, we measure the time to
insert n uniform random 40-bit numbers serially. To
measure the space usage, we report the size of each
data structure after the n insertions. To measure search
performance, we then in parallel search for a group of
107 uniform random 40-bit numbers. Each individual
search proceeds serially, but multiple searches happen
simultaneously. To measure scan performance, we sum
up the elements in parallel.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

PMA SPMA-Linear SPMA-Eytzinger SPMA-Btree B+-tree

Elements Throughput Throughput SU Throughput SU Throughput SU Throughput SU

1E5 4.1E8 4.7E8 1.1 5.1E8 1.2 4.9E8 1.2 3.8E8 0.9

1E6 2.6E8 3.3E8 1.3 3.9E8 1.5 4.2E8 1.7 2.8E8 1.1

1E7 8.1E7 1.9E8 2.4 2.4E8 2.9 2.3E8 2.9 1.5E8 1.9
1E8 2.9E7 1.3E8 4.4 1.8E8 6.1 1.8E8 6.3 8.4E7 2.9

1E9 2.0E7 6.1E7 3.1 1.2E8 6.1 1.4E8 7.1 5.6E7 2.9

Table 4: Throughput (in elements/second) of searching for elements in parallel on the uniform random input. SU
denotes the speedup over the traditional PMA.

Since the TLX B+-tree does not come with a
parallel scan, we implement a best-case parallel sum for
the B+-tree. First, we equally split up the B+-tree with
a scan through the elements which is not counted in the
time. We then parallelize over these equally split parts
and perform a (serial) sum in each of the parts. Finally,
we reduce the partial sums but do not count this last
step in the time. We take the minimum of the serial
and parallel sum times.

To test range queries, we fix the size of the data
structure and number of queries and vary ℓ, the range
of the query. Specifically, we insert n = 108 uniform
random 40-bit elements into each data structure and
then pick m = 105 uniform random elements as start
points for the range queries. Let {s1, s2, . . . , sm} denote
the m start points. In parallel, for all i = 1, 2, . . . ,m,
we perform a range query in the range [si, si + ℓ). For
this particular query, we count the number of elements
in the range. For each ℓ, we limit the start points to
fall in the range [0, 240 − ℓ] to ensure the entire range
queried is within the experiment’s universe of elements.

We also compare insertion performance for all of
the data structures on inputs with varying amounts of
sortedness inspired by previous work [10] to stress the
worst case in the PMA. The worst-case input for PMAs
(and SPMAs) always inserts a new minimum element at
the beginning of the array. We only measure insertion
performance for these inputs because changing the input
distribution does not affect the other operations (search,
range query, and scan). For each of these tests, we
insert n = 108 elements, each with probability p of
being smaller than the current minimum element (i.e.,
an insert at the beginning) and probability 1 − p of
being a uniformly random 40-bit number. We add 108

to all of the random 40-bit numbers to ensure that the
sorted inserts at the beginning are always smaller than
the current minimum element.

Searches: Figure 3 and Table 4 show that SPMA-
Eytzinger and SPMA-Btree are between 1.3 × −2.5×
faster for searches than B+-trees. Additionally, SPMAs
are up to 7.1× faster to search than a traditional

105 106 107 108 109
104

108

1012

Heads L1

L2

L3

Number of elements

M
em

or
y
co
n
su
m
p
ti
o
n
(b
y
te
s)

PMA SPMA-L

SPMA-E SPMA-B

B+ Tree

Figure 6: Memory footprints of the different data
structures. The dashed lines show the size of the
different head structures, and the dotted lines show the
size of the various caches.

PMA. At smaller input sizes below 107 elements, all
tested data structures have relatively similar search
performance (within 1.5×) because they all fit in cache
and therefore have lower access latency. Although B+-
trees asymptotically match SPMA-Btree and dominate
SPMA-Eytzinger for searches, the SPMAs are faster
to search because they make better use of prefetching
and the branch predictor as discussed in Section 4.
Therefore, the gap between SPMAs and B+-trees grows
to 2.5× on larger inputs when the memory access
latency increases.

Figure 6 reports the sizes of the data structures
compared to the cache sizes, which correspond to trends
in search performance. Search performance in a tradi-
tional PMA matches the SPMAs for small inputs, but
drops off when the PMA exceeds the cache size (be-
fore 107 elements). In contrast, SPMA-Linear supports
fast searches until the leaf head array exceeds the size
of cache (at about 108 elements). Furthermore, even
though the head arrays of SPMA-Eytzinger/SPMA-
Btree and SPMA-Linear are of similar size, SPMA-
Eytzinger and SPMA-Btree maintain efficient searches
with cache-optimized search layouts even when the head
arrays exceed the cache size.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

PMA SPMA-Linear SPMA-Eytzinger SPMA-Btree B+-tree

Elements Throughput Throughput SU Throughput SU Throughput SU Throughput SU

1E5 6.0E6 8.0E6 1.3 8.5E6 1.4 6.5E6 1.1 1.0E7 1.7

1E6 4.1E6 5.9E6 1.4 6.7E6 1.6 5.7E6 1.4 5.4E6 1.3

1E7 2.1E6 3.3E6 1.6 3.9E6 1.9 3.7E6 1.8 2.6E6 1.2
1E8 1.0E6 2.0E6 2.0 2.8E6 2.8 2.6E6 2.6 1.4E6 1.4

1E9 8.0E5 1.1E6 1.4 1.8E6 2.3 1.8E6 2.3 8.9E5 1.1

Table 5: Throughput (in elements/second) of inserting all uniform random elements in serial. SU denotes speedup
over the traditional PMA.

PMA SPMA-Linear SPMA-Eytzinger SPMA-Btree B+-tree

% Sequential Throughput Throughput SU Throughput SU Throughput SU Throughput SU

0 1.1E06 2.0E06 1.8 2.7E06 2.4 2.6E06 2.3 1.4E06 1.2

10 1.0E06 1.8E06 1.8 2.3E06 2.3 1.9E06 1.9 1.5E06 1.5
20 1.0E06 1.7E06 1.6 2.0E06 2.0 1.5E06 1.5 1.6E06 1.6

30 9.7E05 1.6E06 1.6 1.8E06 1.8 1.3E06 1.3 1.9E06 1.9

40 9.3E05 1.4E06 1.5 1.6E06 1.7 1.1E06 1.2 2.1E06 2.3
50 9.2E05 1.3E06 1.5 1.5E06 1.6 9.4E05 1.0 2.4E06 2.6

100 8.4E05 1.0E06 1.2 1.0E06 1.2 5.9E05 0.7 7.9E06 9.4

Table 6: Insertion throughput (in elements/second) on mixed sorted/unsorted inputs as a function of the percent
of sorted inserts. We use SU to denote the speedup over the PMA.

105 106 107 108 109
0

0.5

1

·107

Number of elements added

T
h
ro
u
gh

p
u
t
(i
n
se
rt
s/
s)

PMA

SPMA-L

SPMA-E

SPMA-B

B+ tree

Figure 7: Insertion throughput on uniform random
inputs.

Uniform random inserts: Figure 7 and Table 5 show
that contrary to the theoretical prediction, SPMAs per-
form inserts on average 1.4× faster and up to 2.1× faster
than the B+-tree on unsorted inputs. Furthermore, SP-
MAs perform inserts up to 2.3× faster than PMAs.

The gap between the SPMAs and B+-tree grows
as the input size increases because the relative fraction
of time spent in searches is proportional to the input
size when the data is uniformly random. For small
inputs of less than 106 elements, the B+-tree is up
to 1.4× faster than the SPMAs because the entire
data structure fits in cache, so the cache-friendliness of
the PMA does not yet make up for its asymptotically

0 10 20 30 40 50
0

2

4

·106

Probability of sorted insert

T
h
ro
u
gh

p
u
t
(i
n
se
rt
s/
s)

PMA SPMA-L

SPMA-E SPMA-B

B+ tree

Figure 8: Insertion throughput on mixed sorted/un-
sorted inputs.

worse searches. For example, in a traditional PMA,
the search takes about 30% of the time when inserting
105 elements, but over 75% of the time when inserting
108 elements. Furthermore, even though the cost
of searching is smaller in SPMAs than in the PMA,
searching still makes up a substantial fraction (25% −
44%) of the insertion time. Therefore, just as in the
search experiments, we find that improvements are most
prominent when the data structures exceed the cache
size, or are larger than 107 elements.

Sorted inserts: Figure 8 and Table 6 show how the
different structures behave as the inputs become less

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

PMA SPMA-Linear SPMA-Eytzinger SPMA-Btree B+-tree

Elements Throughput Throughput SU Throughput SU Throughput SU Throughput SU

1E5 2E9 2E9 1.0 1E9 0.9 2E9 1.0 6E8 0.4

1E6 4E9 3E9 1.0 3E9 0.8 3E9 0.8 9E8 0.2

1E7 6E9 6E9 1.0 6E9 0.9 6E9 0.9 3E9 0.5
1E8 7E9 7E9 1.0 7E9 0.9 7E9 0.9 4E9 0.5

1E9 7E9 8E9 1.0 7E9 1.0 7E9 1.0 4E9 0.5

Table 7: Throughput (in elements/second) of scanning the entire data structure. We use SU to denote the speedup
over the PMA.

105 106 107 108 109
108

109

1010

Number of elements in data structure

T
h
ro
u
g
h
p
u
t
(e
lt
s/
s)

PMA SPMA-L

SPMA-E SPMA-B

B+-tree

Figure 9: Throughput of parallel scan.

random and more sorted. Sorted inserts of new mini-
mum elements stress the worst case in the PMA because
they maximize the number of redistributes. They are
also the best case for the B+-tree because the search
path and the impacted leaves will always be in cache.

We find that the original PMA is always worse for
inserts than the B+-tree regardless of the sortedness of
the input, but that the SPMAs are faster than the B+-
tree for inserts until 25% of the input is sorted. The
traditional PMA’s throughput does not change much
even as the fraction of sorted inserts changes because
the benefit of following the same search path repeatedly
is similar to the cost of more redistributes. In contrast,
searching in the SPMAs is a much smaller fraction of
the total cost, so the redistributes decrease the overall
throughput. Finally, as the fraction of sorted inserts
increases, SPMA-Btree has the slowest throughput of
all the SPMAs because it has the most complicated
mapping and therefore the most expensive redistributes
(which must manage the leaf head array).

The worst-case insertion throughput for the B+-
tree is about 1.5× faster than the worst-case insertion
throughput for the SPMA. For the worst-case for the
PMA (100% ordered inserts), SPMA-Eytzinger achieves
about 1 million inserts per second, which is almost a 3×
slowdown over random inserts. At the same time, for
the worst case for the B+-tree (0% ordered inserts), the
B+-tree achieves almost 1.5 million inserts a second.

In the extreme case of 100% ordered inserts, the
B+-tree achieves up to 8 million inserts per second

100 101 102 103

108

109

1010

Expected elements found
E
x
p
.
th
ro
u
gh

p
u
t
(e
lt
s/
s)

PMA SPMA-L

SPMA-E SPMA-B

B+-tree

Figure 10: Expected elements processed (queries ×
(expected number of elements per query)) per second
in simultaneous range queries.

because all insertions follow the same search path in
cache. However, this case is highly constructed and
unlikely to appear in practice because it inserts all
elements in reverse sorted order.

Scans: Figure 9 and Table 7 show that once the
data structures become sufficiently large, the PMA and
SPMAs are on average 2.3× faster to scan and up to 5×
faster to scan than the B+-tree due to the PMA’s (and
SPMAs’) cache-friendliness. As shown in Section 4,
the SPMAs match the PMA in terms of asymptotic
scan performance. Although the PMA and SPMAs
asymptotically match the B+-tree for scans, in practice,
the PMA/SPMAs are much faster to scan because
they store their data contiguously, whereas the B+-tree
performs pointer indirections to traverse its nodes.

Range queries: Figure 10 and Table 8 show how the
rate of elements processed varies with the size of the
range in range queries. We report the expected elements
processed (queries × expected number of elements per
range query) rather than just the queries because Fig-
ure 5 already addresses the range queries per second.
Just as in the YCSB range queries, the SPMAs out-
perform B+-trees by about 1.3× regardless of the size
of the range, while PMAs are slower than B+-trees for
small ranges and faster for large ranges because PMAs

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

PMA SPMA-Linear SPMA-Eytzinger SPMA-Btree B+-tree

Exp. elts
per query

Throughput Throughput SU Throughput SU Throughput SU Throughput SU

1.5E0 2.66E7 7.57E7 2.9 9.78E7 3.7 1.05E8 4.0 6.75E7 2.5

6.0E0 2.60E7 6.94E7 2.7 9.08E7 3.5 9.93E7 3.8 6.63E7 2.6
2.4E1 2.49E7 5.85E7 2.3 7.26E7 2.9 7.15E7 2.9 5.23E7 2.1

9.5E1 2.13E7 3.84E7 1.8 4.26E7 2.0 3.88E7 1.8 3.19E7 1.5

3.8E2 1.34E7 1.72E7 1.3 1.80E7 1.3 1.63E7 1.2 1.28E7 1.0
1.5E3 5.05E6 5.27E6 1.0 5.33E6 1.1 5.25E6 1.0 3.95E6 0.8

6.1E3 1.47E6 1.43E6 1.0 1.44E6 1.0 1.43E6 1.0 1.07E6 0.7

Table 8: Throughput (in queries/second) of range queries as a function of expected elements returned. SU denotes
speedup over the traditional PMA. The elements processed per second is just the query throughput multiplied
by the expected elements per query.

PMA SPMA-Linear SPMA-Eytzinger SPMA-Btree B+-tree

Elements Total Heads Total Heads Total Heads

1E5 1.7E06 1.8E06 5.3E04 1.8E06 5.9E04 1.8E06 9.2E04 1.4E06
1E6 1.7E07 1.7E07 5.2E05 1.7E07 5.2E05 1.7E07 5.6E05 1.4E07

1E7 1.7E08 1.7E08 5.2E06 1.7E08 6.8E06 1.7E08 5.8E06 1.4E08

1E8 1.6E09 1.7E09 5.1E07 1.7E09 5.9E07 1.7E09 6.2E07 1.4E09
1E9 1.6E10 1.6E10 2.5E08 1.6E10 2.6E08 1.6E10 4.4E08 1.4E10

Table 9: The memory sizes of the different data structures in bytes. The SPMA sizes are divided into the total
size and the leaf head array size. For reference, L1 is 1.6E6 bytes, L2 is 5.0E7 bytes and L3 is 7.5E7 bytes.

excel on scans. The throughput in terms of queries per
second decreases with the size of the range because each
query processes more elements. However, the elements
processed per second increases with the size of the range
because larger ranges involve larger scans and scans are
much faster than searches (Figures 3 and 9).

Memory footprint: Figure 6 and Table 9 report
the sizes of the PMA, SPMAs, and B+-trees. The
SPMA variants have different leaf head array sizes
due to padding, but the extra allocated space is never
accessed by the searches because it exceeds the search
range. Finally, the PMA and SPMAs take about
1.2× more space than the B+-tree because the PMA
uses a constant factor of extra spaces to maintain its
bounds, whereas the B+-tree uses an asymptotically
small number of elements in the internal nodes and only
one extra pointer per leaf.

6 Conclusion

This paper introduces the design, analysis, and im-
plementation of several examples of search-optimized
PMAs (SPMAs). These SPMAs use cache-friendly lay-
outs to overcome the traditional tradeoff between up-
dates and scans in PMAs when compared with other

cache-friendly data structures such as B-trees. Specifi-
cally, SPMAs are faster than B+-trees for both queries
and updates on unsorted inputs. On mixed query/in-
sert workloads from YCSB, they are between 2 − 2.4×
faster compared to the TLX B+-tree. On uniform ran-
dom inputs, SPMAs are on average between 1.3− 2.3×
faster on all operations compared to the B+-tree. On
the worst-case insertion distribution for the PMA, the
SPMAs’ insertion throughput is about 1.5× slower than
the worst-case B+-tree’s insertion throughput. How-
ever, the worst case for the PMA is a highly structured
reverse sorted input, and the SPMAs match or exceed
the B+-tree’s insertion throughput when the input is
up to 25% sorted.

Acknowledgments

This research is funded in part by the Advanced Scien-
tific Computing Research (ASCR) program within the
Office of Science of the DOE under contract number
DE-AC02-05CH11231, the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. De-
partment of Energy Office of Science and the National
Nuclear Security Administration.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

References

[1] Static B-trees. https://en.algorithmica.org/hpc/

data-structures/s-tree/, 2022.
[2] A. Aggarwal and J. S. Vitter, The input/output

complexity of sorting and related problems, Communi-
cations of the ACM, 31 (1988), pp. 1116–1127.

[3] Amazon, Amazon web services. https://aws.amazon.
com/, 2022.

[4] R. Bayer and E. M. McCreight, Organization and
maintenance of large ordered indexes, Acta Informat-
ica, 1 (1972), pp. 173–189.

[5] M. A. Bender, E. D. Demaine, and M. Farach-
Colton, Cache-oblivious B-trees, in Proceedings of the
41st Annual Symposium on Foundations of Computer
Science, IEEE, 2000, pp. 399–409.

[6] , Cache-oblivious B-trees, SIAM Journal on Com-
puting, 35 (2005), pp. 341–358.

[7] M. A. Bender, Z. Duan, J. Iacono, and J. Wu, A
locality-preserving cache-oblivious dynamic dictionary,
in Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’02, USA,
2002, Society for Industrial and Applied Mathematics,
p. 29–38.

[8] M. A. Bender, Z. Duan, J. Iacono, and J. Wu, A
locality-preserving cache-oblivious dynamic dictionary,
Journal of Algorithms, 53 (2004), pp. 115–136.

[9] M. A. Bender, J. T. Fineman, S. Gilbert,
T. Kopelowitz, and P. Montes, File maintenance:
when in doubt, change the layout!, in Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, 2017, pp. 1503–1522.

[10] M. A. Bender and H. Hu, An adaptive packed-
memory array, ACM Transactions on Database Sys-
tems (TODS), 32 (2007), pp. 26–es.

[11] T. Bingmann, TLX: Collection of sophisticated C++
data structures, algorithms, and miscellaneous helpers,
2018. https://panthema.net/tlx, retrieved Oct. 7,
2020.

[12] A. Clauset, C. R. Shalizi, and M. E. Newman,
Power-law distributions in empirical data, SIAM re-
view, 51 (2009), pp. 661–703.

[13] D. Comer, Ubiquitous B-tree, ACM Computing Sur-
veys (CSUR), 11 (1979), pp. 121–137.

[14] B. F. Cooper, A. Silberstein, E. Tam, R. Ra-
makrishnan, and R. Sears, Benchmarking cloud
serving systems with YCSB, in Proceedings of the 1st
ACM symposium on Cloud computing, 2010, pp. 143–
154.

[15] D. De Leo and P. Boncz, Teseo and the analysis of
structural dynamic graphs, Proceedings of the VLDB
Endowment, 14 (2021), pp. 1053–1066.

[16] M. Durand, B. Raffin, and F. Faure, A packed
memory array to keep moving particles sorted, in 9th
Workshop on Virtual Reality Interaction and Physi-
cal Simulation (VRIPHYS), The Eurographics Associ-
ation, 2012, pp. 69–77.

[17] M. Eytzinger, Thesaurus principum hac aetate in
Europa viventium, 1590, pp. 146–147.

[18] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ra-
machandran, Cache-oblivious algorithms, in FOCS,
1999, pp. 285–298.

[19] J. L. Hennessy and D. A. Patterson, Computer
architecture: a quantitative approach, Elsevier, 2011.

[20] Intel Corporation, Intel Cilk Plus Lan-
guage Specification, 2010. Document Num-
ber: 324396-001US. Available from http:

//software.intel.com/sites/products/cilk-plus/

cilk_plus_language_specification.pdf.
[21] A. Itai, A. G. Konheim, and M. Rodeh, A sparse

table implementation of priority queues, in ICALP,
1981, pp. 417–431.

[22] D. W. Jones, An empirical comparison of priority-
queue and event-set implementations, Commun. ACM,
29 (1986), p. 300–311.

[23] P.-V. Khuong and P. Morin, Array layouts for
comparison-based searching, ACM J. Exp. Algorith-
mics, 22 (2017).

[24] A. LaMarca and R. Ladner, The influence of
caches on the performance of heaps, ACM J. Exp.
Algorithmics, 1 (1996), p. 4–es.

[25] C. Lattner, LLVM: An Infrastructure for Multi-
Stage Optimization, Master’s thesis, Computer Science
Dept., University of Illinois at Urbana-Champaign, Ur-
bana, IL, Dec. 2002. See http://llvm.cs.uiuc.edu.

[26] C. Lattner and V. Adve, LLVM: A Compilation
Framework for Lifelong Program Analysis & Trans-
formation, in Proceedings of the 2004 International
Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar. 2004, p. 75.

[27] K. J. Nesbit and J. E. Smith, Data cache prefetch-
ing using a global history buffer, in 10th International
Symposium on High Performance Computer Architec-
ture (HPCA’04), IEEE, 2004, pp. 96–96.

[28] M. E. Newman, Power laws, Pareto distributions and
Zipf’s law, Contemporary Physics, 46 (2005), pp. 323–
351.

[29] R. Niewiadomski and J. N. Amaral, Chopping up
trees to improve spatial locality in implicit k-heaps,
Tech. Rep. TR-06-06, University of Alberta Depart-
ment of Computer Science, 2006.

[30] P. Pandey, B. Wheatman, H. Xu, and A. n.
Buluç, Terrace: A hierarchical graph container
for skewed dynamic graphs, in SIGMOD, 2021,
p. 1372–1385.

[31] J. R. C. Patterson, Modern microprocessors: A 90
minute guide! https://www.lighterra.com/papers/

modernmicroprocessors/, 2016.
[32] V. Raman, Locality preserving dictionaries: Theory &

application to clustering in databases, in Proceedings
of the Eighteenth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS
’99, New York, NY, USA, 1999, Association for Com-
puting Machinery, p. 337–345.

[33] T. B. Schardl, W. S. Moses, and C. E. Leiserson,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Tapir: Embedding recursive fork-join parallelism into
llvm’s intermediate representation, ACM Transactions
on Parallel Computing (TOPC), 6 (2019), pp. 1–33.

[34] J. Toss, C. A. Pahins, B. Raffin, and J. L.
Comba, Packed-memory quadtree: A cache-oblivious
data structure for visual exploration of streaming spa-
tiotemporal big data, Computers & Graphics, 76 (2018),
pp. 117–128.

[35] B. Wheatman and R. Burns, Streaming sparse
graphs using efficient dynamic sets, in 2021 IEEE In-
ternational Conference on Big Data (BigData), IEEE,
2021, pp. 284–294.

[36] B. Wheatman and H. Xu, A parallel packed memory
array to store dynamic graphs, in ALENEX, 2021,
pp. 31–45.

[37] D. E. Willard, Maintaining dense sequential files in a
dynamic environment, in Proceedings of the fourteenth
annual ACM Symposium on Theory of Computing,
1982, pp. 114–121.

[38] D. E. Willard, Good worst-case algorithms for in-
serting and deleting records in dense sequential files, in
Proceedings of the 1986 ACM SIGMOD International
Conference on Management of Data, 1986, pp. 251–
260.

[39] D. E. Willard, A density control algorithm for doing
insertions and deletions in a sequentially ordered file in
a good worst-case time, Information and Computation,
97 (1992), pp. 150–204.

[40] J. W. J. Williams, Algorithm 232: Heapsort, Com-
munications of the ACM, 7 (1964), p. 347–348.

[41] YCSB, Core workloads. https://github.com/

brianfrankcooper/YCSB/wiki/Core-Workloads,
2020.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

