
Brief Announcement: Multicore Paging Algorithms
Cannot Be Competitive

Shahin Kamali
shahin.kamali@umanitoba.ca

Department of Computer Science
University of Manitoba
Winnipeg, Mb, Canada

Helen Xu
hjxu@mit.edu

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA, USA

ABSTRACT

Every processor with multiple cores sharing a cache needs to imple-
ment a page-replacement algorithm. López-Ortiz and Salinger [5]
demonstrated that competitive ratio of canonical paging algorithms
such as Least-Recently-Used (LRU) and Furthest-In-Future (FIF)
grows with the length of the input. In this paper, we answer an
open question about the existence of competitive multicore pag-
ing algorithms in the negative. Specifically, we show that all lazy
algorithms, which include all practical algorithms, cannot be com-
petitive against the optimal offline algorithm.

CCS CONCEPTS

• Theory of computation→ Caching and paging algorithms.
KEYWORDS

Multicore paging, caching, parallel architectures, online algorithms
ACM Reference Format:

Shahin Kamali and Helen Xu. 2020. Brief Announcement: Multicore Pag-
ing Algorithms Cannot Be Competitive. In Proceedings of the 32nd ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’20), July
15–17, 2020, Virtual Event, USA. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3350755.3400270

1 INTRODUCTION

Despite the widespread use of multiple cores in a single machine,
the theoretical performance of even the most common cache evic-
tion algorithms is not yet fully understood when multiple cores
simultaneously share a cache. Paging algorithms for multicore ar-
chitectures have been well-studied in practice, including dynamic
cache-partitioning heuristics [8, 10, 11] and operating system cache
management [2, 7, 12]. There are very few theoretical guarantees,
however, for performance of these algorithms.

In this paper, we explore the multicore paging problem in
which multiple cores share a cache and request pages in an online
manner. Upon serving a request, the requested page should become
available in the shared cache. If the page is already in the cache, a hit
takes place; otherwise, when the page is not in the cache, the core
that issues the request incurs a fault. In case of a fault, the requested
page should be fetched to the cache from a slowmemory. Fetching a

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6935-0/20/07.
https://doi.org/10.1145/3350755.3400270

page causes a fetch delay in serving the subsequent requests made
by the core that incurs the fault. Such delay is captured by the free-
interleaving model of multicore paging [4, 5]. Under this model,
when a core incurs a fault, it spends multiple cycles fetching the
page from the slowmemorywhile other cores may continue serving
their requests in the meantime. Therefore, an algorithm’s eviction
strategy not only defines the state of the cache and the number of
faults, but also the order in which requests are served. That is, a
paging algorithm implicitly defines a “schedule” of requests served
at each timestep through its previous eviction decisions.

Divergence between multicore and single-core paging.

López-Ortiz and Salinger [5] leveraged the scheduling aspect of
multicore paging to demonstrate that guarantees on competitive
ratio1 of algorithms in the single-core setting do not extend to multi-
core paging. In particular, they focused on two classical single-core
paging algorithms, Least-Recently-Used (LRU) [9] and Furthest-
In-Future (FIF) [1], and showed these algorithms are unboundedly
worse than the optimal algorithm OPT in the multicore setting.
LRU is an online paging algorithm that evicts the least-recently-
requested page. FIF is an offline paging algorithm that evicts the
page that will be requested furthest in the future. In the single-core
setting, LRU is k-competitive (where k is the size of the cache) [9],
and FIF is the optimal algorithm [1].

Non-competitiveness of lazy algorithms. We confirm the
intuition that multicore paging is much harder than single-core
paging and show that all practical lazy algorithms are equivalently
non-competitive 2 against OPT (Corollary 3.2). More precisely, we
provide adversarial inputs formed by a total of n requests that show
the competitive ratio of any lazy algorithm is Ω(n1/2/k).

An online algorithm is lazy3 if it 1) evicts a page only if there
is a fault 2) evicts at most one page in case of a fault, 3) for all
timesteps, does not evict a page that incurred a hit in that timestep,
and 4) evicts a page only if there is no space left in the cache.
Algorithms with properties 1-3 (but not necessarily 4) are called
“honest” algorithms [5]. Lazy algorithms capture natural properties
of online algorithms. For example, if there was a hit on a page σ
at some timestep, a lazy algorithm does not evict σ in that same
timestep. Additionally, once the cache is full, a lazy algorithm keeps
it full. Common paging strategies such as LRU and First-In-First-Out
(FIFO) are clearly lazy.

1For a cost-minimization problem, an online algorithm has a competitive ratio of at
most c if its cost on any input never exceeds c times the cost of an optimal offline
algorithm (up to an additive constant).
2 A multicore paging algorithm is not competitive if its competitive ratio depends on
n, the length of the input.
3We adopt the k -server definition of lazy algorithms [6].

https://doi.org/10.1145/3350755.3400270
https://doi.org/10.1145/3350755.3400270
https://doi.org/10.1145/3350755.3400270


SPAA ’20, July 15–17, 2020, Virtual Event, USA Kamali and Xu

2 PROBLEM DEFINITION

This section reviews the free-interleaving model [4, 5] of multicore
paging.

Assume we are given a multicore processor with p cores labeled
P1, P2, . . . , Pp and a shared cache with k pages (k ≫ p).

Input description.An input to themulticore paging problem
is formed by p request sequences R = (R1, . . . ,Rp ). Each core Pi
must serve its corresponding request sequence
Ri = ⟨σi ,1, . . . ,σi ,ni ⟩ made up of ni page requests. For all i , we
assume ni ≫ k , τ . The total number of page requests is therefore
n =

∑
1≤i≤p ni .

Free-interleaving model. Page requests arrive at discrete
timesteps. The requests issued by each core should be served in
the same order that they appear and in an online manner. More
precisely, for all i , j ≥ 1, core Pi must serve request σi , j before
σi , j+1, andσi , j+1 is not revealed beforeσi , j is served. Themulticore
processor may serve at most p page requests in parallel (up to one
request per core4). Each page request must be served as soon as it
arrives. To serve a request to some page σi , j in sequence Ri , core
Pi either has a hit, when σi , j is already in the cache, or incurs a
fault when σi , j is not present in the cache. In case of a fault, the
requested page should be fetched into the cache. It takes τ timesteps
to fetch a page into the cached, where τ is an integer parameter
of the problem. During these timesteps, Pi cannot see any of its
forthcoming requests, that is, σi , j+1 is not revealed to Pi before
σi , j is fully fetched. In case some other core P∗ , Pi is already
fetching the page when the fault occurs, Pi waits for less than τ
timesteps until the page is fully fetched to the cache. We measure
the cost of algorithms in terms of the number of faults they incur
while serving an input.

A multicore paging algorithm A reads requests from request
sequences in parallel and is defined by its eviction decisions at each
timestep. If a core faults while the cache is full, A must evict a
page to make space for the requested page before fetching it. We
continue the convention [3, 5] that when a page is evicted, the
cache cell that previously held the evicted page is unused until the
replacement page is fetched. Finally, the processor serves requests
from different request sequences in the same timestep in some fixed
order (e.g., by core index).

3 NON-COMPETITIVENESS OF LAZY

ALGORITHMS

We show that no lazy algorithm for multicore paging is competitive.
We first show that no algorithm is competitive for the case of two
cores in Theorem 3.1, then extend our argument to an arbitrary
number of cores in Corollary 3.2.

Theorem 3.1. When there are p = 2 cores, the competitive ratio of
any lazy algorithm A is Ω(n1/2/k) in terms of the number of faults.

Proof Sketch. The adversary constructs an input formed by
requesting pages from two disjoint sets of k “red” (r) and k “blue”
(b) pages overϕ rounds (ϕ ≈

√
n/2). The requests made by each core

4In practice, a single instruction of a core may involve more than one page, but we
assume that each request is to one page in order to model RISC architectures with
separate data and instruction caches [5].

in each round forms an “easy phase" followed by a “hard phase".
Each phase is formed by exactly ℓ requests (ℓ ≈

√
n).

Each phase has a color that is associated with the color of most
requested pages in that phase. Easy and hard phases of P1 are all
respectively blue and red, while easy and hard phases of P2 are all
respectively red and blue. With the exception of the first phase of
P1 and the last phase of P2, any phase in each core gets a “partner"
phase of the same color in the other core. Specifically, the ith easy
phase of P1 is partnered with the (i − 1)-th hard phase of P2, and
the ith easy phase of P2 is partnered with the ith hard phase of P1.

The adversary defines an input such that there exists an (honest
but not lazy) offline algorithm OFF that serves the requests in part-
ner phases at the same time. Figure 1 illustrates the alignment of
the two cores in A and OFF as well as the cache state in selected
timesteps.

Next, we formalize how the adversary makes requests in each
phase. Every phase has exactly ℓ page requests. Easy phases are
formed by requests to only two pages. The first phase of P1 differs
from the rest of the easy phases because it does not have a partner
and requests two red pages in a loop. All later easy phases are
defined based on the decisions of A during their partner hard
phases. Let Qe ,i be the ith easy phase of color c ∈ {r ,b} and
let qci ≤ k denote the number of requests to unique pages made
in Qe ,i ’s corresponding hard phase Qh ,i . For all i , the adversary
generatesQe ,i by repeating requests to two pages of different colors
followed by requests to one page of the same color of the phrase.
The initial two pages are arbitrarily selected from the set of red/blue
pages in theA’s cache just before the start ofQe ,i . At the beginning
ofQe ,i , the two red/blue pages are requested one after the other for
the first qci requests, while the remaining ℓ − qci requests are to the
single page that has color c . The two pages that form the requests
of an easy phase are always in the cache of A at the beginning of
the phase. Moreover, A serves the easy phases of P1 at the same
time as easy phases of P2 and incurs all hits for both cores (with
the exception of the cold misses in the first easy phase).

Hard phases are made by requesting the pages that are absent
from A’s cache. At the beginning of any hard phase, at least one
page of each color is present in the cache of A. Because there are
k pages of each color, the adversary generates the hard phase of a
given color by always asking for some absent page of that color and
A incurs a fault on every request of a hard phase. The inductive
construction ensures the ith request of the two cores are served
at the same time. In particular, the hard phases start at the same
time and hence there will be congestion in the cache during the
hard phases. The number of faults byA is at least equal to the total
length of hard phases. There are Θ(

√
n) hard phases, each of length

Θ(
√
n), for a total cost of A(R) = Θ(n).

An offline algorithm OFF can schedule the input such that part-
ner easy and hard phases are served at the same time. This is done
by “postponing" the first easy red phase (the first phase of P2) by
always evicting the page of the phase that is present in the cache
before fetching the other page of the phase. Meanwhile, OFF hits
on all requests in the first easy blue phase (the first phase of P1)
except the first two cold misses (it simply brings the two pages
into the cache). After the first easy blue phase ends, OFF serves the
remainder of the first easy red phase together with its partner, the
first red hard phase, in a way that they end at the same time. This



Brief Announcement: Multicore Paging Algorithms
Cannot Be Competitive SPAA ’20, July 15–17, 2020, Virtual Event, USA

!
OFF

t1

Cache State

t1 t2t0

Input Sequence

t0
!

OFF

t2
!

OFF

ℓ ℓ ℓ ℓ ℓ

OFF
P1

P2

…

…
c c c c 

c c 
ℓ ℓ ℓℓ

!
P1

P2

c c c c c 

c c c c c 

…

…

c 

c 

Figure 1: An example of the alignment of A and OFF described in Theorem 3.1 of two cores. For each sequence, easy phases

consist of cycles of requests to two distinct pages (stripes of red and blue) followed by requests to a single page (light red and

light blue), while hard (dark red and dark blue) phases are adversarial and designed so A faults on every request.

Left: A serving all cores in their easy and hard phases at the same time while OFF delays P2.
Right: Examples of the cache state with k = 10 at each of the timesteps marked t0, t1, t2. At t0, the yellow cells represent empty

cells. At t1 after the first red hard phase, A also finishes its first blue hard phase while OFF finishes the first blue easy phase.

The light purple cells are those that could either be red or blue. At timestep t2, A has at least one of each color page in its

cache, whereas OFF might only have blue pages.

scheme also applies for other phases, i.e., any phase starts and ends
with its partner. To maintain this alignment, OFF ensures there is
a fault in the easy phase for each fault in the hard phase. When a
page is requested in the hard phase for the first time, OFF keeps it
in the cache until the end of the phase. Therefore, there is a fault in
a hard phase only when a page is requested for the first time during
the phase. The first qci requests of the partner of the phase (an easy
phase) are to two different pages of different colors. Upon a fault
in the hard phase, OFF evicts one of these pages. This ensures the
next request is a fault in the easy phase. In particular, in the very
last fault of the hard phase (after qci requests), OFF evicts the page
that has color other than c . Consequently, in the remainder of these
two partnered phases, all requested pages are in the cache and OFF
hits on all of the remaining requests.

Analysis. The total number of faults by OFF in the two partner
phases will be no more than 2k (up to k for each). There are ϕ − 1 =
Θ(

√
n) pairs of partner phases for a total of Θ(k

√
n) faults. The first

phase of P1 and the last phase of P2 have length ℓ and OFF incurs
no more than ℓ = Θ(

√
n) faults in them. In conclusion, the total

number of faults in A and OFF are respectively Θ(n) and Θ(k
√
n),

which gives a competitive ratio of Ω(n1/2/k) for A. □
For the case of arbitrary p > 2, we can partition the cores into

two disjoint groups, assign to the two colors, and repeat the input
from Theorem 3.1 across cores to get the following corollary.

Corollary 3.2. For any number of cores, the competitive ratio of
any lazy algorithm A is Ω(n1/2/k).

4 CONCLUSIONS

We showed that no lazy algorithm is competitive because the adver-
sary has the power to artificially delay sequences. The scheduling
power of OPT in multicore paging motivates the need for alterna-
tive measures of online algorithms.

ACKNOWLEDGEMENTS

Research was sponsored by the United States Air Force Research
Laboratory and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied,
of the United States Air Force or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
herein.

REFERENCES

[1] Laszlo A. Belady. 1966. A study of replacement algorithms for a virtual-storage
computer. IBM Systems journal 5, 2 (1966), 78–101.

[2] Alexandra Fedorova, Margo I. Seltzer, and Michael D. Smith. 2006. Cache-Fair
Thread Scheduling for Multicore Processors. Technical Report. Harvard University.

[3] Avinatan Hassidim. 2010. Cache Replacement Policies for Multicore Processors..
In ICS. 501–509.

[4] Anil Kumar Katti and Vijaya Ramachandran. 2012. Competitive Cache Replace-
ment Strategies for Shared Cache Environments. In IEEE 26th International Parallel
& Distributed Processing Symposium (IPDPS). 215–226.

[5] Alejandro López-Ortiz and Alejandro Salinger. 2012. Paging for Multi-Core
Shared Caches. In Proceedings of the 3rd Innovations in Theoretical Computer
Science Conference. ACM, 113–127.

[6] Mark S Manasse, Lyle A McGeoch, and Daniel D Sleator. 1990. Competitive
algorithms for server problems. Journal of Algorithms 11, 2 (1990), 208–230.

[7] Moinuddin K Qureshi, Aamer Jaleel, Yale N Patt, Simon C Steely, and Joel
Emer. 2007. Adaptive Insertion Policies for High Performance Caching. In ACM
SIGARCH Computer Architecture News, Vol. 35. 381–391.

[8] Moinuddin K. Qureshi and Yale N. Patt. 2006. Utility-Based Cache Partitioning:
A Low-Overhead, High-Performance, Runtime Mechanism to Partition Shared
Caches. InMicroarchitecture,MICRO. ACM International Symposium On. 423–432.

[9] Daniel D. Sleator and Robert E. Tarjan. 1985. Amortized Efficiency of List Update
and Paging Rules. Commun. ACM 28, 2 (1985), 202–208.

[10] Harold S. Stone, John Turek, and Joel L. Wolf. 1992. Optimal Partitioning of
Cache Memory. IEEE Transactions on computers 41, 9 (1992), 1054–1068.

[11] G Edward Suh, Larry Rudolph, and Srinivas Devadas. 2004. Dynamic Partitioning
of Shared Cache Memory. The Journal of Supercomputing 28, 1 (2004), 7–26.

[12] Yuejian Xie and Gabriel H. Loh. 2009. PIPP: Promotion/Insertion Pseudo-
Partitioning of Multi-Core Shared Caches. In ACM SIGARCH Computer Architec-
ture News, Vol. 37. ACM, 174–183.


	Abstract
	1 Introduction
	2 Problem definition
	3 Non-competitiveness of lazy algorithms
	4 Conclusions
	References

