
ar
X

iv
:2

01
1.

02
04

6v
1 

 [
cs

.D
S]

  3
 N

ov
 2

02
0

Beyond Worst-case Analysis of Multicore Caching Strategies

Shahin Kamali∗ Helen Xu†

Abstract

Every processor with multiple cores sharing a cache
needs to implement a cache-replacement algorithm. Pre-
vious work demonstrated that the competitive ratio
of a large class of online algorithms, including Least-
Recently-Used (LRU), grows with the length of the in-
put. Furthermore, even offline algorithms like Furthest-
In-Future, the optimal algorithm in single-core caching,
cannot compete in the multicore setting. These nega-
tive results motivate a more in-depth comparison of mul-
ticore caching algorithms via alternative analysis mea-
sures. Specifically, the power of the adversary to adapt
to online algorithms suggests the need for a direct com-
parison of online algorithms to each other.

In this paper, we introduce cyclic analysis, a general-
ization of bijective analysis introduced by Angelopoulos
and Schweitzer [JACM’13]. Cyclic analysis captures the
advantages of bijective analysis while offering flexibil-
ity that makes it more useful for comparing algorithms
for a variety online problems. In particular, we take
the first steps beyond worst-case analysis for analysis of
multicore caching algorithms. We use cyclic analysis to
establish relationships between multicore caching algo-
rithms, including the advantage of LRU over all other
multicore caching algorithms in the presence of locality
of reference.

1 Introduction

Despite the widespread use of multiple cores in a sin-
gle machine, the theoretical performance of even the
most common cache eviction algorithms is not yet fully
understood when multiple cores simultaneously share a
cache. Caching algorithms for multicore architectures
have been well-studied in practice, including dynamic
cache-partitioning heuristics [34, 38, 40] and operating
system cache management [33, 41, 22]. There are very
few theoretical guarantees, however, for performance of
these algorithms. Furthermore, most existing guaran-
tees on online multicore caching algorithms are nega-
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tive [31, 25], but resource augmentation may be helpful
in some cases [1, 2].

In this paper, we explore the multicore caching1

problem in which multiple cores share a cache and
request pages in an online manner. Upon serving a
request, the requested page should become available in
the shared cache. If the page is already in the cache, a
hit takes place; otherwise, when the page is not in the
cache, the core that issues the request incurs a miss. In
case of a miss, the requested page should be fetched to
the cache from a slow memory. Fetching a page causes a
fetch delay in serving the subsequent requests made by
the core that incurs the miss. Such delay is captured by
the free-interleaving model of multicore caching [31, 27].
Under this model, when a core incurs a miss, it spends
multiple cycles fetching the page from the slow memory
while other cores may continue serving their requests
in the meantime. Therefore, an algorithm’s eviction
strategy not only defines the state of the cache and the
number of misses, but also the order in which requests
are served. That is, a caching algorithm implicitly
defines a “schedule” of requests served at each timestep
through its previous eviction decisions.

Divergence between multicore and single-
core caching. Previous work [31, 25] leveraged the
scheduling aspect of multicore caching to demonstrate
that guarantees on competitive ratio2 of algorithms
in the single-core setting do not extend to multicore
caching. In particular, López-Ortiz and Salinger [31]
focused on two classical single-core caching algorithms,
Least-Recently-Used (LRU) [37] and Furthest-
In-Future (FIF) [11], and showed these algorithms are
unboundedly worse than the optimal algorithm OPT
in the free-interleaving model3. In the free-interleaving

1This problem is also called “paging” in the literature [31].
We use “multicore caching” because it more accurately reflects
the problem studied in this paper.

2For a cost-minimization problem, an online algorithm has a
competitive ratio of c if its cost on any input never exceeds c times
the cost of an optimal offline algorithm for the same input (up to
an additive constant).

3LRU is an online caching algorithm that evicts the least-
recently-requested page. FIF is an offline caching algorithm that
evicts the page that will be requested furthest in the future. Both
algorithms evict pages only when the cache is full and there is a
request to a page not in the cache. In the multicore setting, ties
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model, FIF evicts the page furthest in the future in
terms of the number of requests. In the single-core
setting, LRU is k-competitive (where k is the size of
the cache) [37], and FIF is the optimal algorithm [11].
Kamali and Xu [25] further confirmed the intuition
that multicore caching is much harder than single-
core caching and showed that all lazy algorithms are
equivalently non-competitive against OPT. An online
caching algorithm is lazy [32] if it 1) evicts a page only
if there is a miss 2) evicts no more pages than the misses
at each timestep, 3) in any given timestep, does not evict
a page that incurred a hit in that timestep, and 4) evicts
a page only if there is no space left in the cache4. Lazy
algorithms capture natural and practical properties of
online algorithms. Common caching strategies such as
LRU and First-In-First-Out (FIFO) are clearly lazy.
Unfortunately, the competitive ratio of this huge class
of algorithms is bounded and grows with the length of
the input.

The existing negative results for competitive analy-
sis consider a cost model in which the goal is to minimize
the number of misses. Nevertheless, they extend to the
case when the objective is the total number of timesteps
to answer all requests [25]. We focus on the latter mea-
sure in this paper because it is more practical, as we
will explain in detail in Section 2.

At a high level, the divergence between performance
of algorithms for multicore and single-core caching
stems from the power of the adversary to adapt to online
algorithms and to generate inputs that are particularly
tailored to harm the schedule of online algorithms. For
these adversarial inputs, the implicit scheduling of lazy
algorithms causes periods of “high demand” in which
the cache of the algorithm is congested (cores request
many different pages). Meanwhile, an optimal offline
algorithm avoids these high-demand periods by delaying
cores in an “artificial way”. These adversarial inputs
highlight the inherent pessimistic nature of competitive
analysis.

Beyond worst-case analysis. The highly-
structured nature of the worst-case inputs suggests that
competitive analysis might not be suitable for studying
multicore caching algorithms and motivates the study of
alternatives to competitive ratio. There are two main
reasons to go beyond competitive analysis for analy-
sis of multicore caching algorithms. First, competitive
analysis is overly pessimistic and measures performance
on worst-case sequences that are unlikely to happen in
practice. In contrast, measures of typical performance

can happen; both LRU and FIF break ties arbitrarily.
4Lazy algorithms are often called “demand paging” in the

systems literature [35]. Algorithms with properties 1-3 (but not
necessarily 4) are called “honest” algorithms [31].

are more holistic than worst-case analysis, which dis-
misses all other sequences. Second, competitive anal-
ysis does not help to separate online algorithms for
multicore caching because no practical algorithm can
compete with an optimal offline algorithm [25]. There-
fore, other measures are required to establish the ad-
vantage of one online algorithm over others. Many al-
ternative measures have been proposed for single-core
caching [43, 42, 29, 26, 16, 14, 45, 44, 12]. For a survey
of measures of online algorithms, we refer the reader
to [21, 28, 15]. In particular, bijective analysis [5, 7, 8]
is a natural measure that directly compares online algo-
rithms and has been used to capture the advantage of
LRU over other online single-core caching algorithms
on inputs with “locality of reference” [5, 7]. Despite
these results, as we will show, bijective analysis has re-
strictions when it comes to multicore caching.

1.1 Contributions We take the first steps beyond
competitive analysis for multicore caching by extending
bijective analysis to a stronger measure named cyclic
analysis and demonstrating how to apply cyclic anal-
ysis to analyze multicore caching algorithms. The pes-
simistic nature of competitive analysis demonstrates the
need for alternative measures of online algorithms.

Cyclic analysis. We introduce cyclic analysis, a
measure that captures the benefits of bijective analysis
and offers additional flexibility which we will demon-
strate in our analysis of multicore caching algorithms.
Cyclic analysis generalizes bijective analysis by directly
comparing two online algorithms over all inputs. Tra-
ditional bijective analysis compares algorithms by par-
titioning the universe of inputs based on input length
and drawing bijections between inputs in the same par-
tition [4, 7, 5, 20]. Cyclic analysis relaxes this require-
ment by allowing bijections between inputs of differ-
ent lengths. This flexibility allows for alternative proof
methods for showing relationships between algorithms.

We show that all lazy [31, 32] algorithms are equiv-
alent under cyclic analysis. More interestingly, we show
the strict advantage of any lazy algorithm over Flush-
When-Full (FWF) under cyclic analysis (FWF evicts
all pages upon a miss on a full cache). In the single-core
setting, the advantage of lazy algorithms over FWF is
strict and trivial: for any sequence, the cost of LRU
is no more than FWF. In the multicore setting, how-
ever, such separation requires careful design and map-
ping with a bijection on the entire universe of inputs
(Theorem 4.1) under cyclic analysis.

Separation of LRU via cyclic analysis. Our
main contribution is to show the strict advantage of a
variant of LRU over all other lazy algorithms under
cyclic analysis combined with a measure of locality
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(Theorem 5.2). Although LRU is equivalent to all other
lazy algorithms without restriction on the inputs under
cyclic analysis, it performs strictly better in practice [36].
This is due to the locality of reference that is present
in real-world inputs [3, 19, 18]. In order to capture
the advantage of LRU, we apply cyclic analysis on a
universe that is restricted to inputs with locality of
reference [3] and show that LRU is strictly better than
any other lazy algorithm.

Map. The remainder of the paper is organized
as follows. Section 2 describes the model of multicore
caching and provides definitions used in the rest of the
paper. Section 3 introduces cyclic analysis and estab-
lishes some useful properties of this measure. Section 4
applies cyclic analysis to establish the advantage of lazy
algorithms over non-lazy FWF. Section 5 shows the ad-
vantage of LRU over all other lazy algorithms under
cyclic analysis on inputs with locality of reference. Sec-
tion 6 reviews related models of multicore caching, and
Section 7 includes a few concluding remarks. All omit-
ted proofs can be found in the full version.

2 Problem definition

This section reviews the free-interleaving model [31, 27]
of multicore caching and the cost models that are used
in this paper. The free-interleaving model is inspired
by real-world architectures and captures the essential
aspects of the multicore caching problem.

Assume we are given a multicore processor with p
cores labeled P1, P2, . . . , Pp and a shared cache with k
pages (k ≫ p).

Input description. An input to the multicore
caching problem is formed by p online sequences R =
(R1, . . . ,Rp). Each core Pi must serve its corresponding
request sequence Ri = 〈σi,1, . . . , σi,ni〉 made up of ni

page requests. The total number of page requests is
therefore n =

∑

1≤i≤p ni. Given a page (or sequence
of pages) α and a number of repetitions r, let αr

denote r repetitions of requests to α. We assume that
for all values of i, the length of the request sequence
ni is arbitrarily larger than k. That is, we assume
that k ∈ Θ(1), which is consistent with the common
assumption that parameters like k and τ are constant
compared to the length of the input.

All requests σi,j are drawn from a finite universe of
possible pages U . Throughout this paper, we assume
that request sequences for different cores may share
requests to the same page. In practice, cores may share
their requests because of races, or concurrent accesses
to the same page.

Serving inputs. Page requests arrive at discrete
timesteps. The requests issued by each core should be

served in the same order that they appear and in an
online manner. More precisely, for all i, j ≥ 1, core Pi

must serve request σi,j before σi,j+1, and σi,j+1 is not
revealed before σi,j is served. The multicore processor
may serve at most p page requests in parallel (up to one
request per core5). Each page request must be served
as soon as it arrives. To serve a request to some page
σi,j in sequence Ri, core Pi either has a hit , when σi,j

is already in the cache, or incurs a miss when σi,j

is not present in the cache. In case of a miss, the
requested page should be fetched into the cache. It
takes τ timesteps to fetch a page into the cache, where
τ is an integer parameter of the problem. During these
timesteps, Pi cannot see any of its forthcoming requests,
that is, σi,j+1 is not revealed to Pi before σi,j is fully
fetched . In case some other core P ∗ 6= Pi is already
fetching the page when the miss occurs, Pi waits for
less than τ timesteps until the page is fully fetched to
the cache.

Free-interleaving model. A multicore caching
algorithm A reads requests from request sequences in
parallel and is defined by its eviction decisions at each
timestep. If a core misses while the cache is full, A must
evict a page to make space for the requested page before
fetching it. We continue the convention [24, 31] that
when a page is evicted, the cache cell that previously
held the evicted page is unused until the replacement
page is fetched. Finally, the processor serves requests
from different request sequences in the same timestep
in some fixed order (e.g., by core index). In today’s
multicore systems, requests from multiple cores may
reach a shared cache simultaneously. If one core is
delayed due to a request to a page not in the cache, other
cores may continue to make requests. Figure 1 contains
an example of serving an input with Least-Recently-
Used (LRU) [37, 24, 31] under free interleaving.

Schedule. Multicore caching differs from single-
core caching because of the scheduling component as
a result of the fetch delay. The fetch delay slows
down cores at different rates depending on the misses
they experience, and requests with the same index
on different cores may be served at different times
depending on previous evictions. In other words, the
eviction strategy implicitly defines a schedule, or an
ordering in which the requested pages are served by an
algorithm. Given an input R defined by p sequences,
the schedule of a caching algorithm can be represented
with a copy of R in which some requests are repeated.

5In practice, a single instruction of a core may involve more
than one page, but we assume that each request is to one page
in order to model RISC architectures with separate data and
instruction caches [31].
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These extra requests captures the timestep at which the
processor serves requests from that input sequence using
the caching algorithm. That is, a schedule has all the
same requests as the corresponding input, but repeats
page requests upon a miss until the page has been fully
fetched.

The schedule produced by LRU in the example
input in Figure 1 is the underlined request at each
timestep (a formal definition of a schedule can be found
in Section 5).

Cost model. We use the total time to measure
algorithm performance and denote the cost that an
algorithm A incurs on input R with A(R). The non-
competitiveness results from prior work in terms of the
number of misses also hold under the total time [31, 25].

Definition 2.1. (Total time) The total time an al-
gorithm A takes to serve an input R is the sum of
the timesteps it takes for all cores to serve their respec-
tive request sequences. That is, the total time A(R) =
∑

1≤i≤p

A(Ri) where A(Ri) denotes the timesteps Pi took

to serve Ri with algorithm A.

Total time combines aspects from both makespan
and the number of misses, the two cost measures in
previous studies of multicore caching [31, 27]. The
makespan is the maximum time it takes any core to
complete its request sequence, and hence is bounded
above by total time. Specifically, the total time is mono-
tonically increasing with respect to both the number of
misses and the makespan.

The total time is a more realistic measure of per-
formance than the number of misses because it deter-
mines performance in terms of the time that it takes
to serve the input. In contrast, the number of misses
does not directly correspond with the time to serve an
input because a miss may take less than τ steps to
fetch the page if it is already in the process of being
fetched by another core. The total time also captures
aspects of algorithm performance that are not addressed
by makespan. In particular, makespan does not capture
the overall performance of all cores. For example, a so-
lution in which all cores complete at timestep t has a
better makespan than a solution in which one core com-
pletes at timestep t + 1 while the rest complete much
earlier, e.g. at timestep t/2. The second solution is pre-
ferred in practice (and also under the total time) as most
cores are freed up earlier.

3 Cyclic analysis for online problems

We define a new analysis measure called cyclic analy-
sis inspired by bijective analysis [6, 4, 7, 5, 20] and ex-

plore alternative paths to showing relationships between
algorithms under cyclic analysis via a relaxed measure
called “natural surjective” analysis. Cyclic analysis ex-
tends the advantages of bijective analysis to online prob-
lems with multiple input sequences.

Overview. Although traditional bijective analysis
has been applied to compare single-core caching algo-
rithms, it requires modification to capture the notion of
“input length” in multicore caching. Since each request
sequence in an input for multicore caching may have
a different length in terms of the number of requests,
there are multiple ways to define the length of an input.
It is not clear which definition of length is most natural
or correct for multicore caching.

Furthermore, partitioning the input space based
on the number of requests in an input as in bijective
analysis for single-core paging may be overly restrictive
for multicore caching, because the time it takes to serve
inputs of the same length (in terms of the number of
requests) may differ depending on the algorithm. In
multicore caching, the time depends on the interleaving
of the multiple request sequences. Cyclic analysis
addresses these issues by removing the restriction that
bijections should be drawn between inputs of the same
length.

At a high level, in order to show a relationship be-
tween two algorithms A and B under bijective analysis
or cyclic analysis, one must define a mapping between
inputs and their costs under different algorithms. One
way to model mappings between inputs with different
costs is with a input-cost graph . Given algorithms
A and B, an input-cost graph is an infinite directed
graph where the nodes represent inputs and there ex-
ists an edge from input R1 to input R2 if and only if
A(R1) ≤ B(R2). In order to show the advantage of
algorithm A over B, traditional bijective analysis parti-
tions the (infinite) graph of inputs into finite subgraphs,
each formed by inputs of the same length. Within each
partition, the bijection relating A to B defines a set of
cycles such that each vertex is in exactly one cycle of
finite length (cycles may have length one, i.e. they may
be self-loops). Cyclic analysis relaxes the requirement
that all subgraphs in the partition must be finite, but
also requires that each node in each induced subgraph
must have an in-degree and out-degree of one. That is,
each node in the induced subgraph is part of a cycle.

Measure definition and discussion. Let I
denote the (infinite) set of all inputs, and for an
algorithm A and input R ∈ I, let A(R) denote the
cost A incurs while serving R. The notation in our
discussions of cyclic analysis is inspired by [4].

Definition 3.1. (Cyclic analysis) We say that an

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



Timestep (t) Cache before t R1, R2 Status Schedule SR,LRU[t]

0 ⊥⊥⊥⊥ a1a2a1a5 P1 misses, starts fetching a1 (a1, a3)
a3a4a5a2 P2 misses, starts fetching a3

1 ⊥⊥⊥⊥ a1a2a1a5 P1 is fetching a1 (a1, a3)
a3a4a5a2 P2 is fetching a3

2 ⊥⊥⊥⊥ a1a2a1a5 P1 completes fetching a1 (a1, a3)
a3a4a5a2 P2 completes fetching a3

3 a1a3⊥⊥ a1a2a1a5 P1 misses, starts fetching a2 (a2, a4)
a3a4a5a2 P2 misses, starts fetching a4

4 a1a3⊥⊥ a1a2a1a5 P1 is fetching a2 (a2, a4)
a3a4a5a2 P2 is fetching a4

5 a1a3⊥⊥ a1a2a1a5 P1 completes fetching a2 (a2, a4)
a3a4a5a2 P2 completes fetching a4

6 a1a3a2a4 a1a2a1a5 P1 has a hit for a1 (a1, a5)
a3a4a5a2 P2 misses, starts fetching a5

(a3 is the least-recently-used page and evicted)

7 a1⊥a2a4 a1a2a1a5 P1 misses, waits for a5 (a5, a5)
a3a4a5a2 P2 is fetching a5

8 a1⊥a2a4 a1a2a1a5 P1 completes serving a5 (a5, a5)
a3a4a5a2 P2 completes fetching (and serving) a5

9 a1a5a2a4 a1a2a1a5 P1 has completed R1 (⊥, a2)
a3a4a5a2 P2 has a hit for a2, completes R2

Figure 1: Example of execution of LRU on the input R = (R1,R2), with R1 = 〈a1a2a1a5〉 and R2 = 〈a3a4a5a2〉.
The cache size is k = 4 and the fetch delay is τ = 3. We use ⊥ in the cache to denote an empty slot or slot
reserved for a page currently being fetched.
If a request incurs a miss, we repeat it in the schedule at most τ times (or however long it takes to be fetched, if
some other processor already requested it but it has not yet been brought to cache). For example, in timestep 7,
we wait two timesteps for a5 to come to the cache for P1 because there were two more steps until a5 was brought
to the cache by P2.
In the “Cache before t” column, we keep track of the state of the cache before each timestep. The rightmost
column is the schedule generated by LRU serving R. The makespan of R under LRU is 10.
The schedule for the two cores P1 and P2 is defined respectively with 〈a1, a1, a1, a2, a2, a2, a1, a5, a5,⊥〉 and
〈a3, a3, a3, a4, a4, a4, a5, a5, a5, a2〉.

online algorithm A is no worse than online algorithm
B under cyclic analysis if there exists a bijection
π : I ↔ I satisfying A(R) ≤ B(π(R)) for each R ∈ I.
We denote this by A �c B. Otherwise we denote the
situation by A �c B. Similarly, we say that A and B
are the same according to cyclic analysis if A �c B and
B �c A. This is denoted by A ≡c B. Finally we say A
is better than B according to cyclic analysis if A �c B
and B �c A. We denote this by A ≺c B.

Bijective analysis is defined similarly, except that
the input universe is partitioned based on the length of
inputs, and bijections need to be drawn between inputs
inside each partition. In contrast, cyclic analysis allows
mapping arbitrary sequences to each other. Bijective
analysis and cyclic analysis have several benefits over
competitive analysis [7]. Specifically, they:

• capture overall performance. If A �c B, every “bad”
input for algorithm A corresponds to another input

for algorithm B which is at least as bad. Hence,
the performance of algorithms is evaluated over all
request sequences rather than a single worst-case
sequence.

• avoid comparing to an offline algorithm. Competitive
analysis is inherently pessimistic as it compares online
algorithms based on their worst-case performance
against a powerful adversary. This pessimism is
especially pronounced in multicore caching where an
offline algorithm can “artificially” miss on some pages
in order to schedule sequences in a way to minimize its
total cost. This scheduling power is a great advantage
for OPT as shown in [31]. Instead, we use cyclic
analysis because compares online algorithms directly
without involving an offline algorithm.

• can incorporate assumptions about the universe of
inputs. Cyclic analysis can also define relationships
between algorithm performance on a subset S ⊂ I
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of inputs. For example, applying cyclic analysis
to a restricted universe of inputs with locality of
reference has been used to separate LRU from other
algorithms in the single-core setting [4, 7]. Since
LRU exploits locality of reference, analyzing inputs
with locality may yield a better understanding of the
performance of algorithms. Most other measures such
as competitive ratio are unable to separate LRU from
other lazy algorithms [4].

As mentioned above, bijective analysis, as defined
for single-core caching [4, 7], requires partitioning the
universe of inputs I into finite sets of inputs of the same
length. For multicore caching, however, this partition-
ing is not necessary nor well-defined. In fact, for many
online problems, the length of input is not necessarily a
measure of “difficulty”, as trivial request (e.g., repeating
requests to a page) can artificially increase the length.
As such, there is no priory reason to draw bijections
between sequences of the same length.

For problems such as single-core caching and list
update [7], where the input is formed by a single
sequence, the length of the input is simply the length
of the sequence. In multicore caching, however, the
length of inputs is not well-defined as multiple sequences
are involved. Should the length be the sum of the
number of requests or a vector of lengths for each request
sequence? To address these issues, cyclic analysis
generalizes the finite partitions of bijective analysis to
the entire universe of inputs. This would give cyclic
analysis a flexibility that makes it possible to study
other problems under this measure. We note that, the
restrictive nature of bijective analysis not only makes
it hard to study algorithms under this measure, but
also can cause situations that many algorithms are not
comparable at all. The following example illustrates the
restriction of bijective analysis when compared to cyclic
analysis:

Example. Consider two algorithms A and B for an
online problem P (with a single sequence as its input).
Assume the costs of A and B are the same over all
inputs, except for four sequences. Among these four,
suppose that two sequences σ1 and σ2 have the same
length m and we have A(σ1) = 10 and A(σ2) = 40
while B(σ1) = 20 and B(σ2) = 30. For inputs of
length m, there is no way to define a bijection that
shows advantage of one algorithm over another. So,
the two algorithms are incomparable under bijective
analysis. Next, assume for sequences σ3 and σ4 we have
A(σ3) = 20,A(σ4) = 30,B(σ3) = 40, and B(σ4) = 20.
The following mappings shows A ≺c B: σ1 → σ1, σ2 →
σ3, σ3 → σ4, and σ4 → σ2.

Bounding inputs with the same cost. In

order for cyclic analysis to be a meaningful measure,
there must not be an infinite number of inputs that
achieve the same cost. To be more precise, for the
universe of inputs I and an algorithmA, letA(I) be the
corresponding multiset of costs associated with inputs
in I.

Definition 3.2. (Bounded-shared-cost property)
A cost measure for an online problem satisfies the
bounded-shared-cost property if and only if for any
algorithm A and for all unique costs m ∈ A(I), the set
of inputs that achieve that cost is bounded.

If a cost measure does not satisfy the bounded-
shared-cost property, it is possible to prove contradict-
ing results under cyclic analysis. That is, if there are
infinitely many inputs that achieve each cost, for any
algorithms A,B, it is possible to define bijections such
that A ≺c B and B ≺c A.

In the case of multicore caching, the total time and
makespan cost models both have the bounded-shared-
cost property while the miss count and the closely
related miss rate do not. For example, the infinitely
many sequences that only request some page α (e.g. α,
αα, ααα, . . . ) all have cost one under miss count, but
all have different costs under total time and makespan.

The following lemma guarantees that cyclic analysis
has the “to-be-expected” property that if algorithm A
is better than B, B is not better than A. In the case of
bijective analysis, this property easily follows from the
fact that bijections are drawn in finite sets (formed by
inputs of the same length). Since the bijections in cyclic
analysis are defined in an infinite space, a more careful
analysis is required.

Lemma 3.1. Given algorithms A,B for a problem satis-
fying the bounded-shared-cost property, it is not possible
that A ≺c B and B ≺c A at the same time.

Proof. If A ≺c B, by Definition 3.1, there must exist an
input σ ∈ I such that A(σ) < B(π(σ)). Let σ be the
input with the smallest cost that differs between A,B,

and let I
A(σ)
A , I

A(σ)
B ⊂ I be the sequences that have

cost at most A(σ) in A(I),B(I), respectively. By the

bounded-shared-cost property, |I
A(σ)
A | and |I

A(σ)
B | are

both bounded and |I
A(σ)
A | > |I

A(σ)
B |. It is impossible

to define another function φ such that B �c A because

there are not enough inputs in I
A(σ)
B to map to all inputs

in I
A(σ)
A such that the cost of each input under B is at

most the cost of the corresponding input underA.

Similarly, if A ≺c B, then A 6≡c B for problems
with the bounded-shared-cost property. Additionally,
cyclic analysis has the transitive property: if A �c B
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and B �c C, then A �c C. The bounded-shared-
cost property guarantees that each node in the input-
cost graph has infinite out-degree but finite in-degree
because each input has infinitely many inputs that cost
more than it and finitely many inputs that cost less than
it.

Relation of surjectivity to cyclic analysis. In
the remainder of the section we will discuss the role
of surjective mappings as an intermediate step before
defining a bijective mapping between infinite sets. In
traditional bijective analysis, since the input set is finite
because of the length restriction, any surjective mapping
must also be bijective. In some problems, including
multicore caching, it may be easier to define a surjective
mapping between the inputs. We will first show that
a class of surjective mappings can be converted into
bijective mappings.

Suppose we have a surjective but not necessarily
injective mapping between two infinite sets f : X → Y .
For all positive integers m ∈ N, let Xm ⊆ X,Ym ⊆ Y
be subsets of the pre-image and image respectively such
that exactly m elements in Xm map to one element in
Ym. That is, given some m, x ∈ Xm implies that there
are m − 1 other elements x1, x2, . . . , xm−1 6= x such
that for i = 1, . . . ,m − 1, f(x) = f(xi). Each Xm, Ym

is an element of a partition of the pre-image and image,
respectively.

Definition 3.3. (Natural surjective mapping)
Given a surjective function f : X → Y , f is natural if
and only if for all m ∈ N, the partitions Xm and Ym

are either empty or infinite.

For example, the function f : N→ N, f(x) = ⌊x/2⌋
is a natural surjective mapping (assuming 0 ∈ N)
because exactly two elements in the pre-image map
to each element in the image. In contrast, g : Z →
N, g(x) = |x| is not natural because there is only one
element in X1 and Y1 at x = y = 0.

We introduce natural surjective (NS) analysis,
a technique to compare algorithms under cyclic anal-
ysis using an intermediate surjective but not injective
mapping. The formalization is almost identical to Defi-
nition 3.1, but the function π needs only to be a natural
surjective function. We use �s to denote the relation be-
tween two algorithms under NS analysis. In the rest of
the paper, we will refer to natural surjective functions
and natural surjective analysis as surjective functions
and surjective analysis, respectively.

Lemma 3.2. (“Unzipping” equivalence) Let al-
gorithms A,B be algorithms for a problem with the
bounded-shared-cost property. If A �s B under a
natural surjective mapping, then A ≺c B.

X2 Y2 X2 Y2

x1,1 y1

x1,2

x2,1 y2

x2,2

. . . . . .

unzip
===⇒

x1,1 y1

x1,2 y2

x2,1 y3

x2,2 y4

. . . . . .

Figure 2: Example of unzipping X2, Y2 in a natural
surjective mapping.

Proof. At a high level, we will describe how to convert
a natural surjective function f into a bijective mapping
fb by “unzipping” any many-to-one mappings in each
partition. At a high level, the new mapping fb “remaps”
elements in the preimage to elements in the image.

Let Xm, Ym be the pre-image and image of a non-
empty mapping-based partition for any fixed m ∈ N.
Suppose we order the elements in Ym from lowest to
highest and let yi be the i-th largest element in Ym.
The elements in any set Ym can be ordered because of
the bounded-shared-cost property. Given an element
ymi ∈ Ym, let the corresponding elements in the pre-
image be xi,j ∈ Xm for j = 1, 2, . . . ,m in some order.
Since A(xi,j) ≤ B(ymi ) for all i, j (by the definition of
surjective analysis), for any i, j, A(xi,j) ≤ B(ymz ) for
z > i. Therefore, we define a new bijective mapping
fb based on f such that fb(xi,j) = ymmi+j−1. The new
mapping fb satisfies the property that for all σ ∈ I,
A(σ) ≤ B(fb(σ)).

As shown in the example in Figure 2, we can convert
a natural surjective mapping to a bijective one by
“unzipping” the mapping and maintaining the relative
order of inputs.

The relationship between surjective analysis and
cyclic analysis allows for different paths to proving re-
lationships between algorithms. In traditional bijective
analysis, we had to define a direct bijection between
two algorithms because all surjections are bijections in
finite sets of the same size. Natural surjective analysis
is a potentially easier proof technique that is equivalent
to cyclic analysis.

4 Cyclic analysis for multicore caching

It is straightforward to show that all lazy multicore
caching algorithms are equivalent under cyclic analysis
(see Proposition A.1 for a full proof). Therefore, to
show a separation between two algorithms, we analyze
a variant of FWF that flushes (empties) the entire cache
if it incurs a miss when the cache is full. In what follows,
we show the advantage of lazy algorithms over FWF.
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While this result is not surprising, the techniques used in
the proofs prepare the reader for the more complicated
proof in the next section.

Lemma 4.1. Assume p = 2. Consider two lazy caching
algorithms A and B which have the same eviction policy
starting at the same timestep t and cache contents at t
except for one page x that is present in the cache of A
and absent in the cache of B. If A and B incurred the
same cost up until timestep t, we have A ≺c B.

Proof. At a high level, we will define a surjective cyclic
mapping on the input space with cycles of length 2. For
inputs where x is never requested before being evicted,
A and B perform similarly. We assume these inputs
are mapped to themselves and ignore them (the cycles
associated with these inputs are self-loops). In the
remainder of the proof, we assume x is requested at
timestep t before being evicted. At timestep t, A has
a hit on the request to x while B incurs a miss. As a
result, the schedule of the two algorithms (i.e., the order
at which they serve the requests) becomes different after
serving x and hence there is no guarantee that A has
less cost that B.

We define a bijection b in a way that the schedule of
A for any input R is similar to that of B for serving b(R).
The bijection that we define creates cycles of length 2: if
R′ = b(R) then R = b(R′); we denote this by R ↔ R′.

Let P1 and P2 denote the two cores and let
{.. σ1

.. σ2
denote the continuation of a sequence where P1 asks
for sequence σ1 and P2 asks for σ2 from time t onward.
We define the bijection based on two cases. In both
cases, one of the cores, say P2, has a request to page x
at time t and hence A and B perform differently on the
continuation of the sequence. Assume the contents of
the caches of A and B at time t are respectively H∪{x}
and H .

Case 1: P1 requests a page q /∈ H .
Recall that P2 asks for x at time t, so the input

can be written as R =
{.. qσ
.. xσ′ for some σ and σ′. We

define R′ =

{..
xτσ
.. qσ′

. To show the mapping R ↔ R′ is

a valid mapping we need to show A(R) ≤ B(R′) and
A(R′) ≤ B(R). First, we show A(R) ≤ B(R′). On
input R, A has a miss on q and a hit on x at time t; so,
A starts serving σ and σ′ at timesteps t + τ and t + 1,
respectively, it serves σ exactly τ−1 timesteps later than
σ′. On input R′, B has a miss on both x and q at time t.
It incurs an additional τ − 1 hits on x after fetching it.
So, B starts serving σ and σ′ at timesteps t+ τ +(τ −1)
and t+τ , respectively. In other words, it serves σ exactly
τ−1 timesteps later than σ′. The content of the cache of

A and B is the same for serving σ and σ′. We conclude
that the number of misses (and hence total time) of B
in serving σ and σ′ in R is the same as A in R′. For the
first requests to q and x in R, A incurs one miss (and
total time τ + 1) while B incurs two misses (and total
time 3τ −1) for the first requests to xτ and q in R′. We
conclude that A(R) < B(R′). To complete the proof in
Case 1, we should show A(R′) ≤ B(R). When A serves
R′, it incurs τ hits on xτ and one miss on q; as such,
it starts serving σ and σ′ at the same time t + τ . On
the other hand, when B serves R, it incurs a miss on
both q and x and starts serving σ and σ′ at the same
time t + τ . So, the two algorithms incur the same cost
for serving σ and σ′. Moreover, A one miss and τ hits
(and total time 2τ) for serving xτ and q while B incurs
two misses (and total time 2τ) for serving q and x, so
A(R′) = B(R).

Case 2: P1 asks for a page a ∈ H .

So, the input can be written as R =
{.. aσ
.. xσ′ for

some sequence of requests σ and σ′. We define R′ =
{.. xσ
.. aτσ′ . To show the mapping R ↔ R′ is a valid

mapping we first show A(R) ≤ B(R′). A starts serving
both σ and σ in R at t+ 1 because A has hits on both
a and x. On the other hand, B has a miss on x and
a hit on a when serving all copies of τ . That means,
it starts serving both σ and σ′ in R′ at the same time
t+ τ . The content of the cache of the two algorithms is
also the same (x is now in the cache of B). So, A and
B incur the same number of misses (and total time) for
both σ and σ′. For the prefixes a and x in R, A incurs
0 misses (and total time 2); for the prefixes aτ and x in
R′, B incurs 1 miss (and total time 2τ). We conclude
A(R) < B(R′). Next, we show A(R′) ≤ B(R). A has
hits on all requests in aτ and x in R′, i.e., it serves σ
and σ′ at timesteps t + 1 and t+ τ , respectively. That
is, it serves σ exactly τ − 1 units later than σ′. B, on
the other hand, has a hit at a and a miss at x in R, i.e.
it serves σ and σ′ at times t+ 1 and t+ τ , respectively.
So, the two algorithms incur the same cost for σ and σ′.
For the prefixes aτ and x, A incurs 0 misses and total
time τ + 1. For the prefixes a and x, B incurs 1 miss
and total time τ + 1. We conclude that A(R′) ≤ B(R).

We show the advantage any lazy algorithm A over
non-lazy FWF by comparing their cache contents at
each timestep.

Theorem 4.1. Any lazy algorithm A is strictly better
than FWF under cyclic analysis for p = 2, that is,
A ≺c FWF.

Proof. Let FWFi be a variant of FWF which, instead
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of flushing the cache, evicts i pages from the cache; these
i pages are selected according to A’s eviction policy.
That is, the algorithm evicts i pages that A evicts
when its cache is full (as an example, if A is LRU, the
algorithm evicts the i least-recently-used pages). We
will show A ≺c FWF by transitivity of bijection. In
particular, we show

A = FWF1 ≺c . . . ≺c FWFk−1 ≺c FWFk = FWF.

Let FWFt
i be an algorithm that applies FWFi for

the first t timesteps and FWFi+1 for timesteps after
and including t+1. If we can show FWFt+1

i ≺c FWFt
i

for all t, again by transitivity of bijection, we get
FWFi ≺c FWFi+1. We note that FWFt+1

i and FWFt
i

differ in serving at most one request at time t, and they
have the same eviction strategy for the remainder of the
input. If the cores do not incur a miss at time t, both
algorithms perform similarly. For sequences for which
there is a miss at time t, there will be one less page in
the cache of FWFt

i compared to FWFt+1
i . Therefore,

FWFt+1
i ≺c FWFt

i by Lemma 4.1.

As the bijection in the proofs illustrates, the main
insight of cyclic analysis is the direct comparison of
algorithms by drawing mappings between inputs of
different lengths. In contrast to the single-core setting,
inputs of the same length (in the number of requests) in
multicore caching may take different amounts of time, so
we define bijections based on the schedule (and therefore
length in time) rather than the number of requests.
In the next section, we use the same idea of mapping
sequences with different lengths in requests but similar
schedules.

5 Advantage of LRU with locality of reference

To demonstrate how to use cyclic analysis to separate
algorithms, this section sketches the separation of LRU
from all other lazy algorithms on inputs with locality
of reference via cyclic analysis. Along the way, we
demonstrate how to use surjective analysis to establish
relations between algorithms under cyclic analysis. In
practice, LRU (and its variants) are empirically better
than all other known caching algorithms [36] because
sequences often have temporal locality.

The full proofs for this section can be found in the
full version.

5.1 Preliminaries First, we will formalize the no-
tion of a schedule from Section 2, which represents an
algorithm’s eviction decisions by repeating requests in
an input on a miss. We will use the schedule to later
define locality of reference. Throughout this section, let
A be a caching algorithm and R be an input.

Definition 5.1. (Schedule) The schedule SR,A =
{SR1,A, . . . ,SRp,A} is another input where each request
sequence is defined as the implicit schedule that A
generated while serving R. That is, SRi,A[t] is the
request that core Pi serves at timestep t under A. Also,
SR,A is the same as R with each miss repeated at most
τ−1 times (as many repetitions as it takes to resolve the
given miss, which might be less than τ − 1 if the page
was already in the process of being fetched). We use
SRi,A[t1, t2] (for all i) to denote all requests (including
repetitions due to misses) made by Pi between timesteps
t1 and t2 (inclusive).

We use the formal definition of schedule to discuss
dividing up an input under A based on its schedule up
until some timestep.

Definition 5.2. (Schedule prefix and suffix)
Let nR,A be the time required for A to serve R. Given
an integer timestep j < nR,A, we define parts of the
schedule that will be served before, after, and during
timestep j + 1.

Informally, the schedule prefix Sprej,R,A is all the
requests served up to timestep j with repetitions match-
ing scheduling delay, the schedule at timestep j + 1,
SR,A[j+1], is all requests served at timestep j+1, and

the schedule suffix Ssufj,R,A is all requests served after
timestep j + 1 with repetitions matching scheduling de-
lay. Note that SpreR,A or SsufR,A may be empty. When the
timestep j and/or algorithm A are clear from context,
we will drop them from the schedule notation.

Definition 5.3. (Request prefix and suffix)
Let R≤j,A be all subsequences from R served up to
timestep j, R>j,A be all subsequences from R served
after timestep j, and rj+1 be the requests at timestep
j + 1. For simplicity, we define the request prefix as
Rpre = R≤j,A and request suffix as Rsuf = R>j+1,A

when j,A are understood from context.

The request prefix and suffix formalizes the analysis
technique from Section 4 of defining mappings based on
the continuation of the input after some timestep.

Using the LRU example in Figure 1 when j = 4,
Rpre

1 = a1a2, R
pre
2 = a3a4 because those are the pages

that have been requested until timestep 4. Since at
timestep 5 all cores are fetching requests, rj+1 = ∅.
Also, Rsuf

1 = a1a5 and Rsuf
2 = a5a2 because those

are the requests remaining after timestep 5. Similarly,
SpreR1

= a1a1a1a2 and SpreR2
= a3a3a3a4. At timestep 4,

both cores are fetching, so rj+1 = (a2, a4). The suffix
is the schedule for timesteps after 4, so SsufR1

= a2a1a5a5
and SsufR2

= a4a5a5a5a2.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



Locality of reference and the Max-Model. We
will restrict the space of all inputs with the “Max-
Model”, an experimentally-validated model of locality
of reference that limits the number of distinct pages in
subsequences of an input with a concave function [3].

We define a window of size w in the multicore
setting as p runs of consecutive requests of length w (one
for each core). The Max-Model for multicore caching
is the same as in single-core caching except that it
considers windows over all cores.

In the Max-Model for multicore caching, an inputR
is consistent with some increasing concave function f
if the number of distinct pages in any window of size
w is at most f(w), for any w ∈ N [3]. That is, a
function f : N → R+ is concave if f(1) = p, and
∀n ∈ N : f(n+ 1)− f(n) ≤ f(n+ 2)− f(n+ 1). In the
Max-Model, we also require that f is surjective on the
integers between p and its maximum value.

It is easy to adapt cyclic analysis to the Max-
Model by restricting to inputs consistent with a concave
function f (denoted by If ). Let A �f

c B denote that A
is no worse than B on If under cyclic analysis. Similarly,
let A �f

s B denote that A is no worse than B on If

under surjective analysis.

5.2 Advantage of LRU on inputs with locality
In the rest of the section, we will show that LRU is no
worse than sequences with locality under cyclic analy-
sis by establishing a surjective mapping (Definition 3.3)
and converting it into a bijective mapping (Lemma 3.2).
The main technical challenge in the proof of the sepa-
ration of LRU is that sequences with the same number
of requests may have different schedules and therefore
may differ significantly in their cost, even if they only
differ in one request. We use cyclic analysis to avoid the
restriction of comparing inputs of the same length and
instead define a function to relate inputs of the same
cost.

Along the way, we demonstrate how to use surjec-
tive analysis as a proof technique for comparing algo-
rithms via cyclic analysis on the entire space of inputs
as described in Section 3. The construction of the sur-
jective mapping is inspired by a similar argument in the
single-core setting by Angelopoulos and Schweitzer [7]
which establishes a bijective mapping within finite par-
titions, but requires a more complex mapping based on
schedules.

We will show that for every algorithm A, LRU �f
s

A. An arbitrary algorithmAmay be very different from
LRU. Therefore, instead of defining a direct bijection,
we will use intermediate algorithms B1, . . . ,Bℓ such that
A ≡ B1 �f

s . . . �f
s Bi �

f
s . . . �f

s Bℓ ≡ LRU. The
result follows from the transitivity of the “�f

s” relation.

Intuitively, we construct algorithms “closer” to LRU at
each step in the series as we will explain in Lemma 5.2.
We formalize the notion of an algorithm A’s “closeness”
to LRU in terms of the evictions that it makes. An
algorithm A is LRU-like at timestep t if after serving
all requests up to time t − 1, it serves all requests at
time t as LRU would.

Defining a surjective mapping between in-
puts. At a high level, the proof proceeds by defining
a surjection between similar sequences with two pages
swapped. We define a “complement” of a sequence as
a new sequence with certain pages swapped, and show
properties of complements of sequences with locality re-
quired for our main proof.

Definition 5.4. (Complement [7]) Let β, δ denote
two distinct pages in U , the universe of pages. Let Ri[j]
denote the j-th request in the ith request sequence of an
input R. The complement of Ri[j] with respect to β

and δ, denoted by Ri[j]
(β,δ)

, is the function that replaces

β with δ, and vice versa. Formally, Ri[j]
(β,δ)

= δ, if

Ri[j] = β; Ri[j]
(β,δ)

= β, if Ri[j] = δ; and Ri[j]
(β,δ)

=
Ri(j), otherwise.

We use Ri[j] when β, δ are clear from context. We
denote each request sequence Ri = σi

1 . . . σ
i
ni
, where

Ri has ni requests. For any sequence for a single
core Ri, Ri = Ri[1], . . . ,Ri[ni]. For any multicore
sequence R, R = {R1, . . . ,Rp}. For any sequence
Ri, let Ri[j1, j2] denote the (contiguous) subsequence of
requests σi,j1 , . . . , σi,j2 . Also, we use Rα · Rγ to denote
the concatenation of two sequences Rα,Rγ .

We now extend a lemma from [7] about sequences
with locality that we will use in our main theorem later.
The lemma says that if a sequence . . . δ . . . β . . . δ . . . β . . .
exhibits locality of reference, then . . . δ . . . β . . . β . . . δ
does as well.

Lemma 5.1. Let R be a sequence of requests consistent
with f , A be a caching algorithm, and nR,A be the time
that it takes A to serve R. Let j ≤ nR,A be an (integer)
timestep such that SR,A[1, j] contains a request to β,
and in addition, δ does not appear in SpreR,A = SR,A[1, j]

after the last request to β in SpreR,A.

Let R′ = RpreRsuf denote the sequence
R≤j,AR>j,A, and suppose that R′ is not consistent
with f . Then Rsuf contains a request to β; furthermore,
no request to δ in SsufR,A (SsufR,A = SR,A[j + 1, nR,A])

occurs earlier than the first request to β in SsufR,A.

The following lemma guarantees that for any algo-
rithm A which may make a non-LRU-like eviction at
the (j + 1)-th timestep of some R ∈ If (but will make
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LRU-like evictions for the rest of the timesteps after
j + 1), we can define an algorithm B that makes the
same decisions as A up until timestep j of any sequence
in If , makes an LRU-like decision on the (j + 1)-th
timestep, and is no worse than A under surjective anal-
ysis.

Lemma 5.2. Let If be all inputs consistent with f and
let j be an integer. Suppose A is an algorithm with the
property that for every input R ∈ If , A is LRU-like on
timestep t + 1, for all t ≥ j + 1. Then there exists an
algorithm B with the following properties:

1. For every input R ∈ If , B makes the same
decisions as A on the first j timesteps while serving
R (i.e. , A and B make the same eviction decisions
for each miss in requests up to and including time
t).

2. For every input R ∈ If , B is LRU-like on R at
timestep t.

3. B �f
s A.

Proof Sketch. The main insight in this proof is
the comparison of inputs with different numbers of
page requests but the same cost under two different
algorithms. If an algorithm A makes a non-LRU-like
decision at some timestep, we construct a surjection
that maps it to a sequence with the same schedule under
another algorithm B.

At a high level, we use a “sequence reordering”
mapping inspired by Lemma 2 of [7]. Let B be an
algorithm that matches the evictions of A until time
t, when it makes LRU-like evictions. Suppose at time
t that A evicted a page σNLRU and B evicted a page
σLRU. We construct B to evict the same pages as A on
the remainder of the sequence.

We construct a surjective mapping π such that for
any request sequence R, B(R) ≤ A(π(R)). There are
two main cases based on the continuation of the input
after time t. At a high level, if an input has locality of
reference, then there are not many requests to different
pages. Now, if possible, we swap σLRU, σNLRU in the
continuation of the input after time t since these will
result in the same cost in the continuation.

Case 1: Swapping σLRU, σNLRU in the continuation
maintains locality. In this case, A(R) = B(π(R))
because the different decisions at time t did not affect
the number of misses (and therefore the total time)
while serving the the rest of the input. Swapping the
pages where A, B differ in the continuation of the
mapped-to input results in the same behavior.

Case 2: Swapping σLRU, σNLRU in the continuation
does not maintain locality. There are a few cases when
swapping the two pages would disrupt locality.

• If there was a miss on another page before the first
request to σNLRU in the continuation after time t,
both algorithms would incur the same cost since the
difference in decision does not affect the number of
hits and misses in the rest of the input. In this case,
we set π(R) = R, and B(R) = A(π(R)).

• If there was not a miss before the first request to
σNLRU after time t, B hits on the first request to
σLRU in the continuation, and we remove requests
in π(R) so that the schedule of B serving R matches
the schedule of A serving π(R). Since the schedules
match, B(R) = A(π(R)).

• The above two cases cover the entire codomain, but
not the domain. For the remaining inputs, we
can map them arbitrarily to inputs of higher cost
such that there are no more than two inputs in
the domain mapped to any input in the codomain.
By construction, B(R) < A(π(R)). We present an
example of generating such a mapping from an input
R under algorithms A and B given page σ in Figure 3.

�

Given any algorithm A, we repeatedly ap-
ply Lemma 5.2 to construct a new algorithm B which is
LRU-like after some timestep t and is no worse than A.

Let nR,A be the time it takes to serve input R with
A, and let Bt be the class of algorithms that make LRU-
like decisions on timesteps nR−t of every input R ∈ If .

Lemma 5.3. For every algorithm A there exists an
algorithm Bt ∈ Bt such that Bt �s A, and for every
input R ∈ If , Bt makes the same decisions as A during
the first nR,A − t timesteps while serving R.

For every lazy algorithm A, Lemma 5.3 guarantees
the existence of an algorithm B that makes LRU-like
decisions on all timesteps for any input in If and is no
worse than A. The only algorithm with this property is
exactly LRU.

Theorem 5.1. For any lazy caching algorithm A,
LRU �f

s A.

We have defined a surjection from LRU to any
other algorithm through intermediate algorithms that
are progressively “closer to LRU”. Therefore, we have
shown that LRU is the best lazy algorithm under
cyclic analysis via surjective analysis and therefore
under cyclic analysis by combining Theorem 5.1 and
Lemma 3.2.

Theorem 5.2. For any lazy algorithm A, LRU ≺f
c B.

We take the first steps beyond worst-case analysis
for multicore caching with the separation of LRU from
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t+ τ + a1

t+ τt

P1 . . . . . .

P2 . . . . . .

t+ τ − b2 t+ τ + a2

π(R)

t+ τ + a1

t+ τt

P1 . . . . . .

P2 . . . . . .

t+ τ − b2 t+ τ + a2

Figure 3: An example of the mapping of an input R under algorithm B to π(R) under with τ = 4. On the left,
an input R where a1 = 2, b2 = 2, a2 = 7. The green boxes indicate hits on a page σ in B’s cache but not in
algorithm A’s cache. On the right, we show the corresponding π(R). The red boxes denote misses on σ.

all other lazy algorithms on inputs with locality via
cyclic analysis. The main insight in the proof is to
compare inputs of different lengths (in terms of the
number of page requests) but the same schedule with
a surjective mapping and then to convert the mapping
into a bijection. Although we used it the case of
multicore caching, cyclic analysis is a general analysis
technique that may be applied to other online problems.

6 Related multicore caching models

We review alternative models for multicore caching in
order to explain why we use the free-interleaving model.
Specifically, we discuss a class of models for multi-
core caching called fixed interleaving and the Schedule-
Explicit model introduced by Hassidim [24]. At a high
level, these models assume the order in which the re-
quests are served is decided by the adversary. In prac-
tice, however, the schedule of an algorithm is implic-
itly defined through the eviction strategies [31, 30], so
the free-interleaving model studied in this paper is more
practical.

Existing work focuses on minimizing either the
makespan of caching strategies or on minimizing the
number of misses. In the case of single-core caching,
minimizing the makespan and number of misses are
equivalent as makespan is simply τ times the number
of misses. For multicore caching, however, there is no
such direct relationship between makespan and number
of misses. In this paper, we introduce the total time,
a cost measure with benefits over both makespan and
number of misses while capturing aspects of each.

Feuerstein and Strejilevich de Loma [39, 23] intro-
duced multi-threaded caching as the problem of deter-
mining an optimal schedule in terms of the optimal inter-

leaved request sequence from a set of individual request
sequences from multiple cores. More precisely, given
p request sequences R1, . . . ,Rp, they study miss and
makespan minimization for a “flattened” interleaving
of all Ri’s. Our work focuses on algorithms for page
replacement rather than ordering (scheduling) of the in-
put sequences. As mentioned, in practice, the schedule
of page requests is embedded in the page-replacement
algorithm.

Several previous works [10, 17, 27] studied multi-
core caching in the fixed-interleaving model (named
by Katti and Ramachandran [27]). This model assumes
each core has full knowledge of its future request se-
quence where the offline algorithm has knowledge of
the interleaving of requests. The interleaving of re-
quests among cores is the same for all caching algo-
rithms and potentially adversarial (for competitive anal-
ysis). Katti and Ramachandran [27] gave lower bounds
and a competitive algorithm for fixed interleaving with
cores that have full knowledge of their individual request
sequences. In practice, cores do not have any knowledge
about future requests, and do not necessarily serve re-
quests at the same rate. Instead, they serve requests at
different rates depending on whether they need to fetch
pages to the cache.

Hassidim [24] introduced a model for multicore
caching before free interleaving which we call the
Schedule-Explicit model that allows offline algo-
rithms to define an explicit schedule (ordering of re-
quests) for the online algorithm. Given an explicit
schedule, the online algorithm serves an interleaved se-
quence in the same way that a single-core algorithm
does. The cost of the algorithm, measured in terms of
makespan, is then compared against the cost of an opti-
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mal offline algorithm (which potentially serves the input
using another schedule).

Both Schedule-Explicit and free-interleaving models
include a fetch delay upon a miss, but Schedule-Explicit
gives offline algorithms more power by allowing them to
arbitrarily delay the start of sequences at no cost in
terms of the number of misses (Theorem 3.1 of [24]).
While Schedule-Explicit provides useful insight about
serving multiple request sequences simultaneously, it
leads to overly pessimistic results when minimizing the
number of misses as it gives offline algorithms an unfair
advantage.

Finally, competitive analysis for distributed systems
illustrates the difficulty of multiple independent pro-
cesses. For example, system nondeterminism in dis-
tributed algorithms [9] addresses nondeterminism in the
system as well as in the input. Furthermore, recent
work [13] confirms the difficulty that online algorithms
face in “scheduling” multiple inputs in the distributed
setting.

7 Conclusions

We take the first steps beyond worst-case analysis of
multicore caching in this paper. In Theorem 5.2, we
separated LRU from other algorithms on sequences
with locality of reference. More generally, we introduced
cyclic analysis and demonstrated its flexibility in the
direct comparison of online algorithms. We expect
cyclic analysis to be useful in the study of other online
problems, and leave such application as future work.

We conclude by explaining that we are optimistic
about multicore caching. Multicore caching is an im-
portant problem in online algorithms and motivated by
computer architectures with hierarchical memory. Prac-
titioners have extensively studied cache-replacement
policies for multiple cores. The need for theoretical
understanding of multicore caching will only grow as
multicore architectures become more prevalent.
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A Equivalence of lazy algorithms (from
Section 4)

Proposition A.1. If A and B are two arbitrary lazy
algorithms, A ≡c B.

Proof. The proof is an extension of the proof of The-
orem 3.3 from [5]. Let (nt

1, . . . , n
t
p) be the indices

of R1, . . . ,Rp being served at time t by A,B. Let
nt =

∑p
i=1 n

t
i be the number of requests served up until

time t.
We prove by induction on time that for every

t ≥ 1 that there is a bijection bt : I(nt
1, . . . , n

t
p) ↔

I(nt
1, . . . , n

t
p) such that A(R) = B(bt(R)) for each

R ∈ I(nt
1, . . . , n

t
p). For t ≤ kτ/p, A(R) = B(bt(R))

trivially because A and B can only bring in up to k
pages, so A and B behave the same and incur the same
cost. Assume that for all nt ≤ h where h ≥ k/p, we can
define a bijection bt : R(nt

1, . . . , n
t
p) showing A and B

are equivalent, where nt
i is the number of requests up

to time t of core Pi. We now show how to extend this
bijection for n = h+ 1. We define a new bijection
bh+1 : I(nh+1

1 , . . . , nh+1
p ) ↔ I(nh+1

1 , . . . , nh+1
p ), which

maps the continuations of each request sequence Ri

to the continuations of bh(Ri) in the image. By
assumption, up to time h we have defined a bijection
bh that matches sequences for A, B in terms of cost and
schedule. That is, the number of pages k′ < k being
fetched at time t after serving R by A is the same as
the number of pages being fetched at time t after serving
bh(R) by B.

Let |P | = N be the number of distinct pages that
any algorithm can request.

Since there are i) k−k′ possible next-hit requests in
both A and B at time h+1 and ii) the same number of
cores not currently fetching in A,B at time h+1, we can
arbitrarily biject these to each other in eachRi. We also
do the same for the N−k next-miss requests outside the
cache and the misses on the k′ requests being fetched for
each Ri. A and B incur the same cost in each mapping
and maintain the same schedule, A ≡b B.
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B Proofs for Lemmas in Section 5

B.1 Formalizing LRU in the multicore setting
In order to compare algorithms with LRU, we compare
the state of the cache and the timestamps assigned to
pages in the cache throughout the execution of different
algorithms. At each timestep, LRU assigns integer
tags [7] to each page in its cache to represent when
they were most-recently accessed.

In general, an algorithm A is tag-based if it uses
tags to keep track of when pages were last accessed.
Given an algorithm A that uses tags, we denote the tag
of some page σ in the cache at time t with tagA[σ,St],
where St is the schedule of the input up to time t.

Since will be comparing LRU with arbitrary algo-
rithms via surjective analysis, we will formalize tag-
based LRU [7] in a shared cache. Tag-based LRU in
the multicore setting is a straightforward extension of
its definition in the single-core setting.

Definition B.1. (Tag-based LRU ([7])) Tag-
based LRU assigns a set T of (integer) tags to
each page in its cache to represent when they were
most-recently accessed. Formally, for every page σ in
the cache, let tagLRU[σ,SR,A[t]] be the tag assigned to
σ right after LRU has served requests up to timestep
t. Tag-based LRU processes each request σ at each
timestep ℓ > t as follows:

1. If σ is a hit, LRU updates the tag of
tagLRU[σ,SR,A[ℓ]] = ℓ.

2. If σ is a miss and not currently being fetched by
another core, LRU will evict the page with the
smallest tag (if the cache is full) and fetch σ to the
cache while updating its tag for the next τ timesteps
as it is fetched.

3. If σ is a miss and currently being fetched by another
core, LRU will not evict a page (since the eviction
due to σ already happened) and the core that re-
quested σ will stall for x steps until σ is brought to
the cache.

B.2 Proofs of Lemmas

Lemma 5.1. Let R be a sequence of requests consistent
with f , A be a caching algorithm, and nR,A be the time
that it takes A to serve R. Let j ≤ nR,A be an (integer)
timestep such that SR,A[1, j] contains a request to β,
and in addition, δ does not appear in SpreR,A = SR,A[1, j]

after the last request to β in SpreR,A.

Let R′ = RpreRsuf denote the sequence
R≤j,AR>j,A, and suppose that R′ is not consistent
with f . Then Rsuf contains a request to β; furthermore,

no request to δ in SsufR,A (SsufR,A = SR,A[j + 1, nR,A])

occurs earlier than the first request to β in SsufR,A.

Proof. Since R′ = RpreRsuf is not consistent with f ,
there must exist indices j1,1, j1,2, . . . , jp,1, jp,2 such that
for all i = 1, . . . , p, ji,1 < ji,2 ≤ ni such that the
number of distinct requests over all Ri[ji,1, ji,2] exceeds
f(j2 − j1 + 1) distinct pages. For any subsequence r
in Rsuf, R has the same number of distinct pages as
r. Therefore, at least one of ji,1, ji,2 must be such that
ji,1 ≤ ti,j ≤ ji,2 (where ti,j is the index of some Ri at
time j under A.

Suffices then to argue that for at least one i =
1, . . . , p, Ri[ti,j , ji,2] contains a request to β but not to
δ. For simplicity, we will specify a subsequence of one
Ri to mean over all i = 1, . . . , p.

It is easy to see that Ri[ti,j , ji,2] cannot contain re-
quests to both β and δ, nor can it contain requests to
none of these pages: if either of these cases occurred,
then Ri[ji,1, ji,2] and Ri[ji,1, ti,j ]Ri[ti,j , ji,2] would con-
tain the same number of distinct pages, which contra-
dicts that R is consistent with f . Note that Ri[ji,1, ti,j ]
contains a request to β but not to δ.

Now Rpre Rsuf must contain a request that does
not appear in Ri[ji,1, ji,2] and δ is the only option.
Therefore, Rsuf contains β but not δ.

We advise the reader to first focus on the structure
of the proof of Lemma 5.2 by skipping the proofs of the
propositions, and then revisiting the details afterwards
in Appendix C.

Lemma 5.2. Let If be all inputs consistent with f and
let j be an integer. Suppose A is an algorithm with the
property that for every input R ∈ If , A is LRU-like on
timestep t + 1, for all t ≥ j + 1. Then there exists an
algorithm B with the following properties:

1. For every input R ∈ If , B makes the same
decisions as A on the first j timesteps while serving
R (i.e. , A and B make the same eviction decisions
for each miss in requests up to and including time
t).

2. For every input R ∈ If , B is LRU-like on R at
timestep t.

3. B �f
s A.

Proof. First, we construct B using A on an input R ∈
If . At a high level, B matches A’s eviction decisions
up to time j, makes an LRU-like decision at time j+1,
and matches A in the remainder of the input. First,
we require B to make the same decisions as A on all
requests in Rpre. If A makes LRU-like decisions on all
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misses at time j + 1, then B makes the same LRU-like
decision as A, as well as the same decisions on all Rsuf

as A.
If A makes a non-LRU-like decision at time j + 1,

however, there must exist a pair of pages σLRU, σNLRU ∈
P where σLRU 6= σNLRU such that at timestep j + 1, A
evicts σNLRU from its cache, whereas σLRU is the least-
recently-used page in Rpre (for now we assume that A,
B differ by only one page. The mapping in this lemma
can be repeated for multiple pages, however.) If there
are multiple non-LRU-like decisions at time j + 1, we
can apply the same sequence-mapping technique for all
of them.

We require that B evicts σLRU in the remainder of
the input if there is a miss. The tag of all other pages
besides σNLRU is defined by the last time there were
accessed, and the tag of σNLRU is the last time σLRU

was accessed. More formally, tagB[σNLRU,S
pre
R,A · s

A]←

last[σLRU,S
pre
R,A], and tagB[σ,S

pre
R,A · s

A]← last[σ,SpreR,A]
for all pages σ 6= σNLRU in B’s cache after time j + 1.
We use last[σLRU,S

pre
R,A] to denote the time of the last

access to σLRU in SpreR,A. After time j + 1, we require
that B is tag-based. Note that B is completely online
because it does not know the future.

The two algorithms differ in only one eviction: B
evicts σLRU instead of σNLRU (makes an LRU-like
decision) and demotes the timestamp of σNLRU so that
σNLRU is the least-recently-used page as B prepares to
serve the suffix Rsuf.

By construction, B satisfies properties (1) and (2)
of the lemma. In the rest of the proof, we will show
property (3). Let SIf ,A be the set of schedules resulting
from serving inputs with locality If with A.

We now define a mapping between inputs served by
algorithms that differ on one eviction such that the two
inputs have the same schedule.

Definition B.2. (Inverse input on one page) Let
σ be a page that algorithm B hits on and A misses on
(for the first time after time j + 1) at time t > j + 1.
Also, suppose that R is an input with at least τ
repetitions of σ starting at time t under B. We define
the inverse of R in B under A w.r.t. σ, Vσ,R,A,B,
as as follows: Vσ,R,A,B under A generates the same
schedule as R under B. Informally, Vσ,R,A,B removes
all repetitions due to misses the first time σ is fetched
after time j + 1.

Let R be an input such that at least one core Pi

requests σ at least τ times starting at timestep t when
served by B. Formally, let Pi request σ τ + ai times
starting at time t under B, at index xi through xi+τ+ai
in Ri. In Vσ,R,A,B, we map those requests to a “shorter”
input of repetitions: starting at index xi in Ri, Vσ,R,A,B

only has ai+1 requests to σ. Furthermore, suppose any
other core Pj 6= Pi repeats requests to σ at least bj + aj
times starting at some timestep t+τ−bj (for 0 < bj ≤ τ)
and that they begin at index xj. We map those requests
to ai + 1 repetitions of τ in Vσ,R,A,B. Note that for all
i = 1, . . . , p, ai ≥ 0.

The inverse Vσ,R,A,B is only defined for inputs that
have at least τ repetitions of σ at time t under B. Let
Vσ,If ,A,B be the set of inputs with locality where the
inverse is defined for A.

We present an example of generating Vσ,R,A,B from
R under A and B given page σ in Figure 3. In the
example, we “shorten” the repetitions in Vσ,R,A,B such
that A serving Vσ,R,A,B generates the same schedule as
B serving R. In Vσ,R,A,B, p1 requests σ 3 times (a1+1)
and p2 requests σ 8 times (a2 + 1).

Proposition B.3. Let f be an increasing concave
function and A be any caching algorithm. If an input
R is consistent with f , an input R′ based on R that re-
peats any of its requests σ (immediately after σ) is also
consistent with f .

The only difference between R′ and R is that R′

may have some repeated requests. Repeating requests
does not increase the number of distinct pages in each
window, so R′ must also be consistent with f .

Note that even if an inputR has locality of reference
and has at least τ repetitions of σ at time t under B,
Vσ,R,A,B may not have locality of reference as it removes
duplicates. Every local input that misses on σ at time
t under A has a corresponding input with repetitions
to replicate A’s schedule under B, however, because
creating the same schedule in B requires only adding
repetitions, which maintain locality (Proposition B.3).

We use surjective analysis via case analysis of the
space of request inputs with locality as follows:

π(R) =











































































































































































R
pre

rj+1Rsuf if Rprerj+1Rsuf is consistent with f

and A does not make an LRU-like

decision on Rprerj+1.(B.1)

R Rprerj+1Rsuf is not consistent with f,

and B incurs a miss before the first

request to σLRU in Rsuf.(B.2)

Vσ,R,A,B Rprerj+1Rsuf is not consistent with f,

B does not incur a miss before the

first request to σLRU in Rsuf,

and R ∈ V
σNLRU,If ,A,B

.(B.3)

R
′

Rprerj+1Rsuf is not consistent with f,

B does not incur a miss before the

first request to σLRU in Rsuf,

and R /∈ V
σNLRU,If ,A,B

(B.4)

whereRsuf denotes the complement ofRsuf with respect

to σLRU and σNLRU (Rsuf
(σLRU,σNLRU)

). Additionally,R′
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is another input such that A serving R′ has a greater
total time than B serving R (i.e. B(R) < A(R′)).

First, we show that π(R) accounts for all R ∈ If .

Proposition B.4. The function π(R) : If ↔ If is
surjective and non-injective.

Proof Sketch. Cases 1-3 of π(R) account for the
entire codomain but not the entire domain, because
case (3) is surjective on that partition of the codomain.
Therefore, π(R) is a natural surjective mapping because
there are infinitely many inputs in Case B.4, so there are
infinitely many one-to-one mappings in Cases 1-3, and
then infinitely many two-to-one mappings from Case
4. �

Now we will show that for every R ∈ If , B(R) ≤
A(π(R)). Again, we only consider the case where A
does not make an LRU-like request at time j + 1. We
proceed by case analysis in Propositions B.6 and B.7.
Since we will be comparing the cache contents of A and
B by induction, we define the cache state of B and A as
they serve R and π(R), respectively.

Definition B.5. (Cache state (informal, [7]))
The cache state of an algorithm A at any timestep t
consists of the set of pages in the cache as well as the
tag assigned to each page. For a more formal definition,
see Definition C.1.

We choose tags at time j + 1 to make A LRU-like
and tag-based on the suffix of R so that we can compare
A to B.

Proposition B.6. (Case 1 of π(R)) If

Rprerj+1Rsuf is consistent with f , B(R) = A(π(R)).

Proof Sketch. We prove the proposition by induc-
tion on the timestep ℓ. We will show that the cache
states of A and B are such that B incurs a miss at time
ℓ on R if and only if A incurs a miss at time ℓ on π(R).
We proceed by case analysis.

Case 1. If none of the requests at time ℓ are
σNLRU, σLRU, then A,B have the same behavior
and incur the same cost at time ℓ. Therefore, the
proposition holds for ℓ+ 1.

Case 2. If B sees a request to σLRU at time ℓ, then
A sees a request to σNLRU. By the induction
hypothesis, they have the same behavior with their
respective σNLRU, σLRU, and update their cache
states to assign the same tag to their respective
pages.

Case 3. If B sees a request to σNLRU at time ℓ, then
A sees a request to σLRU, and we use a symmetric
argument to Case 2.

�

Proposition B.7. (Cases 2, 3, 4 of π(R))

If Rprerj+1Rsuf is not consistent with f , then
B(R) ≤ A(π(R)).

Proof Sketch. We proceed by case analysis on
π(R). By construction, A and B incur the same cost up
until time j + 1. Their cache states differ only in that
A’s cache contains σLRU and B’s cache contains σNLRU.
Since Rprerj+1Rsuf is not consistent with f , Lemma 5.1
states that both σLRU and σNLRU must appear in the
suffix Rsuf and that σNLRU must be requested earlier
(in time) than σLRU in Rsuf.

Case 2 of π(R). If B incurs a miss before the first
request to σLRU in Rsuf, π(R) = R. Both A and B
incur a miss at time ℓ, and replace σNLRU and σLRU,
respectively. Therefore, A and B also have all the
same eviction decisions after time ℓ because they
have matching cache states, so B(R) = A(π(R)).

Case 3 of π(R). Suppose that the first request to
σLRU in Rsuf occurs at time t. If π(R) =
VσNLRU,R,A,B, A and B do not incur any misses be-
tween times j + 1 and t. At time t, B incurs a hit
and A incurs a miss. By definition of inverse, A
and B so B(R) = A(π(R)) because they have the
same total time (repeated requests in B to match
the miss in A).

Case 4 of π(R). If π(R) = R′, B(R) < A(π(R)) by
construction of R′.

�

We have shown in Propositions B.6 and B.7 that
there exists a surjection π such that for all R ∈ If ,
B(R) ≤ A(π(R)).

Lemma 5.3. For every algorithm A there exists an
algorithm Bt ∈ Bt such that Bt �s A, and for every
input R ∈ If , Bt makes the same decisions as A during
the first nR,A − t timesteps while serving R.

Proof. We proceed by induction on t. The lemma is
trivially true for t = 0. Let Bt ∈ Bt be an algorithm
such that Bt �s A, and for any input R ∈ If , Bt makes
the same decisions as A for the first nR,A− t timesteps
while serving R.

We show that the claim holds for t + 1 as well.
From Lemma 5.2, there exists an algorithm B such that
B �s Bt, and for every R ∈ If , B makes an LRU-like
decision at time nR,A − t, and matches Bt on the first
nR,A − t− 1 requests in R.

Note that B does not necessarily make LRU-like
decisions for requests after nR,A−t+1. By the induction
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hypothesis, there exists an algorithm B′
t ∈ Bt such that

i) B′
t �s B, and ii) for every R ∈ If , B′

t makes the
same decisions as B on the first nR,A − t timesteps of
R, and LRU-like decisions on the remaining timesteps.
By definition, B′

t ∈ Bt+1. We can reapply the induction
hypothesis: B′

t makes the same decisions as A in the
first nR,A − t − 1 timesteps of R, and so the lemma
holds for t+ 1.
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C Proofs for Propositions in Section 5

Proposition B.4. The function π(R) : If ↔ If is
surjective and non-injective.

Proof. Lemma 5.2 is trivially true if Amade only LRU-
like requests at time j + 1 because A and B would be
the same. Therefore, we will consider the case where A
makes a non-LRU-like eviction at time j + 1.

We proceed by cases following the definition of
π(R).

Case B.1. A also does not make an LRU-like eviction
at time j + 1 on both R and π(R). Since the

complement of Rsuf is just Rsuf, π(π(R)) = R.

Case B.2. Rprerj+1Rsuf is not consistent with f and
B incurs a miss before the first request to σLRU in
Rsuf. Trivially, π(π(R)) = R because π(R) = R.

Case B.3. If Rprerj+1Rsuf is not consistent with f ,
B does not incur a miss before the first request
to σLRU in Rsuf, and R ∈ VσNLRU,If ,A,B, then
π(R) = VσNLRU,R,A,B. The set of all inverses from
R ∈ VσNLRU,If ,A,B is all sequences in If where

Rprerj+1Rsuf is not consistent with f . From Defi-
nition B.2, VσNLRU,If ,A,B is the set of all sequences
with at least one request to σ at time t.

Case B.4. If Rprerj+1Rsuf is not consistent with f ,
B does not incur a miss before the first request
to σLRU in Rsuf, and R /∈ VσNLRU,If ,A,B, then
π(R) = R′. Cases 1, 2, and 3 actually map to all
of If , but we require Case 4 because we have not
yet accounted for all of the domain. Since we have
already defined a mapping to all of the codomain in
the first three cases, all we need is a corresponding
input R′ such that B(R) ≤ A(R′).

Therefore, π(R) is a natural surjective mapping
because there are infinitely many inputs in Case B.4, so
there are infinitely many one-to-one mappings in Cases
1-3, and then infinitely many two-to-one mappings from
Case 4.

Definition C.1. (Cache state (formal) [7]) Let
C[A,R] be the cache state of algorithm A after it
has served input R. The cache state consists of the set
P [A,R] of pages in the cache after serving R, as well
as assigned tags tagA[σ,R] equal to lastA[σ,R] for all
σ ∈ P [A,R].

For example C[A,Rprerj+1] is the cache state of A
after it has served requests up to time j + 1.

The complement of cache state C[A,R] with re-
spect to β and δ, denoted by C[A,R] is a cache state in
which:

• the set of pages is the set P [A,R] (where α is
replaced with β and vice versa).

• tags are as in C[A,R] except for: if β ∈ P [A,R]
(resp. if δ ∈ P [A,R]), then β’s tag in C[A,R]
is the tag of δ in C[A,R] (resp. the tag of β in
C[A,R]).

Proposition B.6. (Case 1 of π(R)) If

Rprerj+1Rsuf is consistent with f , B(R) = A(π(R)).

Proof. Let R≤ℓ,A be the requests served by A up to and
including time ℓ. Let ms(A,R) be the makespan of A
on R. We will show that for all j + 1 ≤ ℓ ≤ ms(A,R),
algorithm B satisfies the following properties:

1. C[B,R≤ℓ,A] = C[A, π(R)≤ℓ,A], and

2. B incurs a miss at time ℓ on R if and only if A
incurs a miss at time ℓ on π(R).

We prove the proposition by induction on the
timestep ℓ. Suppose that the claim holds for ℓ < n:
we will show that it holds for ℓ + 1. By construction,
the claim holds for ℓ = j+1; note that the actions of A
on π(R) at time j+1 and choice of initial tags guarantee
that C[B,R≤j+1,A] = C[A, π(R)≤j+1,A]. We now use
case analysis at timestep ℓ+ 1 on requests SRi,B[ℓ + 1]
for i = 1, . . . , p where SRi,B[ℓ+1] is the request by pi at
time ℓ + 1 while B serves R. Similarly, Sπ(Ri),A[ℓ + 1]
for i = 1, . . . , p is the request by pi at time ℓ + 1 while
A serves π(R).

Case 1. If SRi,B[ℓ+ 1] 6= σNLRU, σLRU, then
σNLRU, σLRU 6= Sπ(Ri),A[ℓ + 1]. If a request
SRi,B[ℓ + 1] is a hit for B, it is also a hit for
A, and both A and B will update the tag of
page SRi,B[ℓ + 1] to ℓ + 1 in their corresponding
caches. Similarly, if SRi,B[ℓ + 1] is a miss for
B, then by the induction hypothesis about the
cache configuration of A, SRi,B[ℓ + 1] will also be
a miss in A. Additionally, A and B will evict the
same page from their cache and update the tag of
SRi,B[ℓ + 1] to ℓ + 1, so the proposition holds for
ℓ+ 1.

Case 2. If SRi,B[ℓ+ 1] = σLRU, then Sπ(Ri),A[ℓ+ 1] =
σNLRU. We consider two cases: either SRi,B[ℓ + 1]
is a hit or miss for B. If it was a hit, then by the
induction hypothesis σNLRU ∈ C[A, π(R)≤ℓ,A] and
Sπ(Ri),A[ℓ + 1] is a hit in A. After serving request
SRi,B[ℓ+1], B updates the tag of σLRU to ℓ+1, and
A sets the tag of σNLRU to ℓ+1, so C[B,R≤ℓ+1,B] =
C[A, π(R)≤ℓ+1,A]. If SR,B[ℓ+ 1]i was a miss for B,
then from the induction hypothesis Sπ(Ri),A[ℓ+ 1]
was not in A’s cache at time ℓ. Therefore, A and
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B evict the same page in order to bring in σLRU

and σNLRU, respectively, and update the respective
tags to ℓ+1. Therefore, we maintain the invariant
that C[B,R≤ℓ+1,B] = C[A, π(R)≤ℓ+1,A].

Case 3. If SRi,B[ℓ+1] = σNLRU, then Sπ(Ri),A[ℓ+1] =
σLRU. We use a symmetric argument to Case 2.

Proposition B.7. (Cases 2, 3, 4 of π(R))

If Rprerj+1Rsuf is not consistent with f , then
B(R) ≤ A(π(R)).

Proof. We proceed by case analysis on π(R). From con-
struction of B, B(R≤j+1,B) = A(π(R≤j+1,B)). Addi-
tionally, from initial choice of tags, C[B,R≤j+1,B] =
C[A, π(R≤j+1,A)]. Specifically,
C[B,R≤j+1,B], C[A,R≤j+1,B ] have identical page sets,
except that the first contains σNLRU and the second con-
tains σLRU. Since Rprerj+1Rsuf is not consistent with
f , Lemma 5.1 states that both σLRU and σNLRU must
appear in the suffix Rsuf and that σNLRU must be re-
quested earlier (in time) than σLRU in Rsuf.

Case 2 of π(R). IfRprerj+1Rsuf is not consistent with
f and B incurs a miss before the first request
to σLRU in Rsuf, π(R) = R. Suppose that the
first request to σLRU in Rsuf occurs at timestep
t and let ℓ (j + 1 < ℓ < t) be the earliest
timestep on which B incurs a miss before t. Let
σi
ℓ be the page that caused the miss at time ℓ

requested by pi: σ
i
ℓ cannot be σLRU. Every request

up to time ℓ must have been a hit for B, and
C[B,R<ℓ,B] = C[A, π(R)<ℓ,A]. On request σi

ℓ,
B incurs a miss, evicts σLRU (in an LRU-like
decision), and brings σi

ℓ to the cache, and sets
its tag to ℓ. Since σi

ℓ /∈ {σLRU, σNLRU}, A will
also incur a miss in π(R) at time ℓ on σi

ℓ and
replace σNLRU with σi

ℓ in a tag-based eviction
(and also set the tag of σi

ℓ to ℓ). Therefore, A
and B have all the same eviction decisions after
time ℓ because C[B,R≤ℓ,B] = C[A, π(R)≤ℓ,A], and
B(R) = A(π(R)).

Case 3 of π(R). Suppose that the first request to

σLRU in Rsuf occurs at time t. If Rprerj+1Rsuf

is not consistent with f , B does not incur a miss
between times j + 1 and t, and R ∈ VσNLRU,If ,A,B,
π(R) = VσNLRU,R,A,B. In this case, A also does
not incur any misses between times j + 1 and t.
On request σt

i = σNLRU, B hits on σNLRU and
A incurs a miss and makes an LRU-like eviction:
specifically, it evicts σLRU, replaces it with σNLRU,

and updates its tag to t + τ (after it is done fetch-
ing). At time t + τ , the cache states of A and
B are the same (C[B,R≤t+τ,B] = C[A,R≤t+τ,A]).
Additionally, B, A are tag-based on each request
in R>t+τ,B, π(R)>t+τ,A (which happen to be the
same). Therefore, the actions of A and B are the
same after time t + τ , and so B(R) = A(π(R))
because they have the same total time (repeated
requests in B to match the miss in A).

Case 4 of π(R). IfRprerj+1Rsuf is not consistent with
f , B does not incur a miss before the first request
to σLRU in Rsuf, and R /∈ VσNLRU,If ,A,B, then
π(R) = R′. In this case, B(R) < A(π(R)) by
construction of R′.
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