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Abstract
This paper presents algorithms for the included-sums
and excluded-sums problems used by scientific com-
puting applications such as the fast multipole method.
These problems are defined in terms of a 𝑑-dimensional
array of 𝑁 elements and a binary associative operator ⊕
on the elements. The included-sum problem requires
that the elements within overlapping boxes cornered at
each element within the array be reduced using ⊕. The
excluded-sum problem reduces the elements outside each
box. The weak versions of these problems assume that
the operator ⊕ has an inverse ⊖, whereas the strong
versions do not require this assumption. In addition to
studying existing algorithms to solve these problems, we
introduce three new algorithms.

The bidirectional box-sum (BDBS) algorithm
solves the strong included-sums problem in Θ(𝑑𝑁)
time, asymptotically beating the classical summed-
area table (SAT) algorithm, which runs in Θ(2𝑑𝑁)
and which only solves the weak version of the problem.
Empirically, the BDBS algorithm outperforms the SAT
algorithm in higher dimensions by up to 17.1×.

The box-complement algorithm can solve the
strong excluded-sums problem in Θ(𝑑𝑁) time, asymp-
totically beating the state-of-the-art corners algorithm
by Demaine et al., which runs in Ω(2𝑑𝑁) time. In 3
dimensions the box-complement algorithm empirically
outperforms the corners algorithm by about 1.4× given
similar amounts of space.

The weak excluded-sums problem can be solved in
Θ(𝑑𝑁) time by the bidirectional box-sum comple-
ment (BDBSC) algorithm, which is a trivial extension
of the BDBS algorithm. Given an operator inverse ⊖,
BDBSC can beat box-complement by up to a factor of 4.

1 Introduction
Many scientific computing applications require reducing
many (potentially overlapping) regions of a tensor, or
multidimensional array, to a single value for each region
quickly and accurately. For example, the integral-image
problem (or summed-area table) [7, 11] preprocesses an
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Figure 1: An illustration of included and excluded sums
in 2 dimensions on an 𝑛1 × 𝑛2 matrix using a (𝑘1, 𝑘2)-box.
(a) For a coordinate (𝑥1, 𝑥2) of the matrix, the included-sums
problem requires all the points in the 𝑘1 × 𝑘2 box cornered
at (𝑥1, 𝑥2), shown as a grey rectangle, to be reduced using a
binary associative operator ⊕. The included-sums problem
requires that this reduction be performed at every coordinate
of the matrix, not just at a single coordinate as is shown
in the figure. (b) A similar illustration for excluded sums,
which reduces the points outside the box.

image to answer queries for the sum of elements in arbi-
trary rectangular subregions of a matrix in constant time.
The integral image has applications in real-time image
processing and filtering [18]. The fast multipole method
(FMM) is a widely used numerical approximation for the
calculation of long-ranged forces in various 𝑁 -particle
simulations [2, 16]. The essence of the FMM is a reduc-
tion of a neighboring subregion’s elements, excluding
elements too close, using a multipole expansion to allow
for fewer pairwise calculations [9, 12]. Specifically, the
multipole-to-local expansion in the FMM adds relevant
expansions outside some close neighborhood but inside
some larger bounding region for each element [2, 28].
High-dimensional applications include the FMM for par-
ticle simulations in 3D space [8,17] and direct summation
problems in higher dimensions [25].

These problems give rise to the excluded-sums
problem [13], which underlies applications that require
reducing regions of a tensor to a single value using a
binary associative operator. For example, the excluded-
sums problem corresponds to the translation of the local
expansion coefficients within each box in the FMM [16].
The problems are called “sums” for ease of presentation,
but the general problem statements (and therefore
algorithms to solve the problems) apply to any context
involving a monoid (𝑆,⊕, 𝑒), where 𝑆 a set of values, ⊕
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is a binary associative operator defined on 𝑆, and 𝑒 ∈ 𝑆
is the identity for ⊕.

Although the excluded-sums problem is particularly
challenging and meaningful for multidimensional tensors,
let us start by considering the problem in only 2
dimensions. And, to understand the excluded-sums
problem, it helps to understand the included-sums
problem as well. Figure 1 illustrates included and
excluded sums in 2 dimensions, and Figure 2 provides
examples using ordinary addition as the ⊕ operator. We
have an 𝑛1 × 𝑛2 matrix 𝒜 of elements over a monoid
(𝑆,⊕, 𝑒). We also are given a “box size” k = (𝑘1, 𝑘2)
such that 𝑘1 ≤ 𝑛1 and 𝑘2 ≤ 𝑛2. The included sum at
a coordinate (𝑥1, 𝑥2), as shown in Figure 1(a), involves
reducing — accumulating using ⊕ — all the elements
of 𝒜 inside the k-box cornered at (𝑥1, 𝑥2), that is,

𝑥1+𝑘1−1⨁︁
𝑦1=𝑥1

𝑥2+𝑘2−1⨁︁
𝑦2=𝑥2

𝒜[𝑦1, 𝑦2] ,

where if a coordinate goes out of range, we assume
that its value is the identity 𝑒. The included-sums
problem computes the included sum for all coordinates
of 𝒜, which can be straightforwardly accomplished with
four nested loops in Θ(𝑛1𝑛2𝑘1𝑘2) time. Similarly, the
excluded sum at a coordinate, as shown in Figure 1(b),
reduces all the elements of 𝒜 outside the k-box cornered
at (𝑥1, 𝑥2). The excluded-sums problem computes
the excluded sum for all coordinates of 𝒜, which can be
straightforwardly accomplished in Θ(𝑛1𝑛2(𝑛1−𝑘1)(𝑛2−
𝑘2)) time. We shall see much better algorithms for both
problems.

Excluded Sums and Operator Inverse One way
to solve the excluded-sums problem is to solve the
included-sums problem and then use the inverse ⊖ of
the ⊕ operator to “subtract” out the results from the
reduction of the entire tensor. This approach fails
for operators without inverse, however, such as the
maximum operator max. As another example, the
FMM involves solving the excluded-sums problem over
a domain of functions which cannot be “subtracted,”
because the functions exhibit singularities [13]. Even
for simpler domains, using the inverse (if it exists) may
have unintended consequences. For example, subtracting
finite-precision floating-point values can suffer from
catastrophic cancellation [13, 30] and high round-off
error [19]. Some contexts may permit the use of an
inverse, but others may not.

Consequently, we refine the included- and excluded-
sums problems into weak and strong versions. The
weak version requires an operator inverse, while the
strong version does not. Any algorithm for the included-
sums problem trivially solves the weak excluded-sums

⎛⎜⎜⎜⎜⎜⎝
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(c)
Figure 2: Examples of the included- and excluded-sums
problems on an input matrix in 2 dimensions with box size
(3, 3) using the max operator. (a) The input matrix. The
square shows the box cornered at (3, 3). (b) The solution
for the included-sums problem with the + operator. The
highlighted square contains the included sum for the box
in (a). The included-sums problem requires computing the
included sum for every element in the input matrix. (c) A
similar example for excluded sums. The highlighted square
contains the excluded sum for the box in (a).

problem, and any algorithm for the strong excluded-
sums problem trivially solves the weak excluded-sums
problem. This paper presents efficient algorithms for
both the weak and strong excluded-sums problems.

Summed-area Table for Weak Excluded Sums
The summed-area table (SAT) algorithm uses the
classical summed-area table method [7,11,29] to solve the
weak included-sums problem on a 𝑑-dimensional tensor
𝒜 having 𝑁 elements in 𝑂(2𝑑𝑁) time. This algorithm
precomputes prefix sums along each dimension of 𝒜 and
uses inclusion-exclusion to “add” and “subtract” prefixes
to find the included sum for arbitrary boxes. The SAT
algorithm cannot be used to solve the strong included-
sums problem, however, because it requires an operator
inverse. The summed-area table algorithm can easily
be extended to an algorithm for weak excluded-sums by
totaling the entire tensor and subtracting the solution
to weak included sums. We will call this algorithm the
SAT complement (SATC) algorithm.

Corners Algorithm for Strong Excluded Sums
The naive algorithm for strong excluded sums that just
sums up the area of interest for each element runs in
𝑂(𝑁2) time in the worst case, because it wastes work by
recomputing reductions for overlapping regions. To avoid
recomputing sums, Demaine et al. [13] introduced an
algorithm that solve the strong excluded-sums problem
in arbitrary dimensions, which we will call the corners
algorithm.

At a high level, the corners algorithm partitions the
excluded region for each box into 2𝑑 disjoint regions
that each share a distinct vertex of the box, while
collectively filling the entire tensor, excluding the box.
The algorithm heavily depends on prefix and suffix sums
to compute the reduction of elements in each of the
disjoint regions.
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Figure 3: Space and time per element of the corners and box-
complement algorithms in 3 dimensions. We use Corners(c)
and Corners Spine to denote variants of the corners algorithm
with extra space. We set the number of elements 𝑁 =
681472 = 883 and the box lengths 𝑘1 = 𝑘2 = 𝑘3 = 4 (for
𝐾 = 64).

Figure 4: Time per element of algorithms for excluded sums in
arbitrary dimensions. The number of elements 𝑁 of the tensor
in each dimension was in the range [2097152, 134217728]
(selected to be a exact power of the number of dimensions).
For each number of dimensions 𝑑, we set the box volume
𝐾 = 8𝑑.

Since the original article that proposed the corners
algorithm does not include a formal analysis of its
runtime or space usage in arbitrary dimensions, we
present one in Appendix A. Given a 𝑑-dimensional tensor
of 𝑁 elements, the corners algorithm takes Ω(2𝑑𝑁) time
to compute the excluded sum in the best case because
there are 2𝑑 corners and each one requires Ω(𝑁) time
to add its contribution to each excluded box. As we’ll
see, the bound is tight: given Θ(𝑑𝑁) space, the corners

algorithm takes Θ(2𝑑𝑁) time. With Θ(𝑁) space, the
corners algorithm takes Θ(𝑑2𝑑𝑁) time.

Contributions This paper presents algorithms for in-
cluded and strong excluded sums in arbitrary dimensions
that improve the runtime from exponential to linear in
the number of dimensions. For strong included sums,
we introduce the bidirectional box-sum (BDBS) al-
gorithm that uses prefix and suffix sums to compute
the included sum efficiently. The BDBS algorithm can
be easily extended into an algorithm for weak excluded
sums, which we will call the bidirectional box-sum
complement (BDBSC) algorithm. For strong excluded
sums, the main insight in this paper is the formulation of
the excluded sums in terms of the “box complement” on
which the box-complement algorithm is based. Table 1
summarizes all algorithms considered in this paper.

Figure 3 illustrates the performance and space usage
of the box-complement algorithm and variants of the 3D
corners algorithm. Since the paper that introduced the
corners algorithm stopped short of a general construc-
tion in higher dimensions, the 3D case is the highest
dimensionality for which we have implementations of
the box-complement and corners algorithm. The 3D
case is of interest because applications such as the FMM
often present in three dimensions [8, 17]. We find that
the box-complement algorithm outperforms the corners
algorithm by about 1.4× when given similar amounts of
space, though the corners algorithm with twice the space
as box-complement is 2× faster. The box-complement
algorithm uses a fixed (constant) factor of extra space,
while the corners algorithm can use a variable amount
of space. We found that the performance of the corners
algorithm depends heavily on its space usage. We use
Corners(c) to denote the implementation of the corners
algorithm that uses a factor of 𝑐 in space to store leaves
in the computation tree and gather the results into the
output. Furthermore, we also explored a variant of the
corners algorithm in Appendix A, called Corners Spine,
which uses extra space to store the spine of the compu-
tation tree and asymptotically reduce the runtime.

Figure 4 demonstrates how algorithms for weak
excluded sums scale with dimension. We omit the corners
algorithm because the original paper stopped short of
a construction of how to find the corners in higher
dimensions. We also omit an evaluation of included-
sums algorithms because the relative performance of
all algorithms would be the same. The naive and
summed-area table perform well in lower dimensions
but exhibit crossover points (at 3 and 6 dimensions,
respectively) because their runtimes grow exponentially
with dimension. In contrast, the BDBS and box-
complement algorithms scale linearly in the number
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Algorithm Source Time Space Included or Excluded? Strong or Weak?
Naive included sum [This work] Θ(𝐾𝑁) Θ(𝑁) Included Strong
Naive included sum complement [This work] Θ(𝐾𝑁) Θ(𝑁) Excluded Weak
Naive excluded sums [This work] Θ(𝑁2) Θ(𝑁) Excluded Strong
Summed-area table (SAT) [11,29] Θ(2𝑑𝑁) Θ(𝑁) Included Weak
Summed-area table

complement (SATC) [11,29] Θ(2𝑑𝑁) Θ(𝑁) Excluded Weak

Corners(c) [13] Θ((𝑑 + 1/𝑐)2𝑑𝑁) Θ(𝑐𝑁) Excluded Strong
Corners Spine(c) [13] Θ((2𝑐+1 + 2𝑑(𝑑− 𝑐) + 2𝑑)𝑁) Θ(𝑐𝑁) Excluded Strong
Bidirectional box sum (BDBS) [This work] Θ(𝑑𝑁) Θ(𝑁) Included Strong
Bidirectional box sum

complement (BDBSC) [This work] Θ(𝑑𝑁) Θ(𝑁) Excluded Weak

Box-complement [This work] Θ(𝑑𝑁) Θ(𝑁) Excluded Strong

Table 1: A summary of all algorithms for excluded sums in this paper. All algorithms take as input a 𝑑-dimensional tensor
of 𝑁 elements. We include the runtime, space usage, whether an algorithm solves the included- or excluded-sums problem,
and whether it solves the strong or weak version of the problem. We use 𝐾 to denote the volume of the box (in the runtime
of the naive algorithm). The corners algorithm takes a parameter 𝑐 of extra space that it uses to improve its runtime.

of dimensions and outperform the summed-area table
method by at least 1.3× after 6 dimensions. The BDBS
algorithm demonstrates the advantage of solving the
weak problem, if you can, because it is always faster than
the box-complement algorithm, which doesn’t exploit
an operator inverse. Both algorithms introduced in this
paper outperform existing methods in higher dimensions,
however.

To be specific, our contributions are as follows:

• the bidirectional box-sum (BDBS) algorithm for
strong included sums;

• the bidirectional box-sum complement (BDBSC)
algorithm for weak excluded sums;

• the box-complement algorithm for strong excluded
sums;

• theorems showing that, for a 𝑑-dimensional tensor
of size 𝑁 , these algorithms all run in Θ(𝑑𝑁) time
and Θ(𝑁) space;

• implementations of these algorithms in C++; and

• empirical evaluations showing that the box-
complement algorithm outperforms the corners al-
gorithm in 3D given similar space and that both
the BDBSC algorithm and box-complement algo-
rithm outperform the SATC algorithm in higher
dimensions.

Outline The rest of the paper is organized as follows.
Section 2 provides necessary preliminaries and notation
to understand the algorithms and proofs. Section 3
presents an efficient algorithm to solve the included-
sums problem, which will be used as a key subroutine in
the box-complement algorithm. Section 4 formulates the
excluded sum as the “box-complement,” and Section 5

describes and analyzes the resulting box-complement
algorithm. Section 6 presents an empirical evaluation
of algorithms for excluded sums. Finally, we provide
concluding remarks in Section 7.

2 Preliminaries
This section reviews tensor preliminaries used to describe
algorithms in later sections. It also formalizes the
included- and excluded-sums problems in terms of tensor
notation. Finally, it describes the prefix- and suffix-sums
primitive underlying the main algorithms in this paper.

Tensor Preliminaries We first introduce the coordi-
nate and tensor notation we use to explain our algo-
rithms and why they work. At a high level, tensors
are 𝑑-dimensional arrays of elements over some monoid
(𝑆,⊕, 𝑒). In this paper, tensors are represented by cap-
ital script letters (e.g., 𝒜) and vectors are represented
by lowercase boldface letters (e.g., a).

We shall use the following terminology. A 𝑑-
dimensional coordinate domain 𝑈 is is the cross
product 𝑈 = 𝑈1×𝑈2×. . .×𝑈𝑑, where 𝑈𝑖 = {1, 2, . . . , 𝑛𝑖}
for 𝑛𝑖 ≥ 1. The size of 𝑈 is 𝑛1𝑛2 · · ·𝑛𝑑. Given a
coordinate domain 𝑈 and a monoid (𝑆,⊕, 𝑒) as defined
in Section 1, a tensor 𝒜 can be viewed for our purposes
as a mapping 𝒜 :𝑈 → 𝑆. That is, a tensor maps a
coordinate x ∈ 𝑈 to an element 𝒜[x] ∈ 𝑆. The size of
a tensor is the size of its coordinate domain. We omit the
coordinate domain 𝑈 and monoid (𝑆,⊕, 𝑒) when they
are clear from context.

We use Python-like colon notation 𝑥 :𝑥′, where
𝑥 ≤ 𝑥′, to denote the half-open interval [𝑥, 𝑥′) of
coordinates along a particular dimension. If 𝑥 :𝑥′

would extend outside of [1, 𝑛], where 𝑛 is the maximum
coordinate, it denotes only the coordinates actually in the
interval, that is, the interval max{1, 𝑥} : min{𝑛 + 1, 𝑥′}.
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If the lower bound is missing, as in :𝑥′, we interpret
the interval as 1 :𝑥′, and similarly, if the upper bound is
missing, as in 𝑥 : , it denotes the interval [𝑥, 𝑛]. If both
bounds are missing, as in : , we interpret the interval as
the whole coordinate range [1, 𝑛].

We can use colon notation when indexing a tensor
𝒜 to define subtensors, or boxes. For example,
𝒜[3 : 5, 4 : 6] denotes the elements of 𝒜 at coordinates
(3, 4), (3, 5), (4, 4), (4, 5). For full generality, a box 𝐵
cornered at coordinates x = (𝑥1, 𝑥2, . . . , 𝑥𝑑) and x′ =
(𝑥′

1, 𝑥
′
2, . . . , 𝑥

′
𝑑), where 𝑥𝑖 < 𝑥′

𝑖 for all 𝑖 = 1, 2, . . . , 𝑑, is
the box (𝑥1 :𝑥′

1, 𝑥2 :𝑥′
2, . . . , 𝑥𝑑 :𝑥′

𝑑). Given a box size
k = (𝑘1, . . . , 𝑘𝑑), a k-box cornered at coordinate x is
the box cornered at x and x′ = (𝑥1+𝑘1, 𝑥2+𝑘2, . . . , 𝑥𝑑+
𝑘𝑑). A (tensor) row is a box with a single value in
each coordinate position in the colon notation, except
for one position, which includes that entire dimension.
For example, if x = (𝑥1, 𝑥2, . . . , 𝑥𝑑) is a coordinate of a
tensor 𝒜, then 𝒜[𝑥1, 𝑥2, . . . , 𝑥𝑖−1, : , 𝑥𝑖+1, 𝑥𝑖+2, . . . , 𝑥𝑑]
denotes a row along dimension 𝑖.

The colon notation can be combined with the
reduction operator ⊕ to indicate the reduction of all
elements in a subtensor:⨁︁

𝒜[𝑥1 :𝑥′
1, 𝑥2 :𝑥′

2, . . . , 𝑥𝑑 :𝑥′
𝑑]

=
⨁︁

𝑦1∈[𝑥1,𝑥′
1)

⨁︁
𝑦2∈[𝑥2,𝑥′

2)

· · ·
⨁︁

𝑦𝑑∈[𝑥𝑑,𝑥′
𝑑)

𝒜[𝑦1, 𝑦2, . . . , 𝑦𝑑] .

Problem Definitions We can now formalize the
included- and excluded-sums problems from Section 1.

Definition 1. (Included and Excluded Sums)
An algorithm for the included-sums problem takes as
input a 𝑑-dimensional tensor 𝒜 :𝑈 → 𝑆 with size 𝑁 and
a box size k = (𝑘1, 𝑘2, . . . , 𝑘𝑑). It produces a new tensor
𝒜′ :𝑈 → 𝑆 such that every output element 𝒜′[x] holds
the reduction under ⊕ of elements within the k-box of
𝒜 cornered at x. An algorithm for the excluded-sums
problem is defined similarly, except that the reduction
is of elements outside the k-box cornered at x.

In other words, an included-sums algorithm computes,
for all x = (𝑥1, 𝑥2, . . . , 𝑥𝑑) ∈ 𝑈 , the value 𝒜′[x] =⨁︀
𝒜[𝑥1 :𝑥1+𝑘1, 𝑥2 :𝑥2+𝑘2, . . . , 𝑥𝑑 :𝑥𝑑+𝑘𝑑]. It’s messier

to write the output of an excluded-sums problem using
colon notation, but fortunately, our proofs do not rely
on it.

As we have noted in Section 1, there are weak and
strong versions of both problems which allow and do not
allow an operator inverse, respectively.

Prefix and Suffix Sums The prefix-sums opera-
tion [4] takes an array a = (𝑎1, 𝑎2, . . . , 𝑎𝑛) of 𝑛 elements
and returns the “running sum” b = (𝑏1, 𝑏2, . . . , 𝑏𝑛) ,

where

(2.1) 𝑏𝑘 =

{︂
𝑎1 if 𝑘 = 1,
𝑎𝑘 ⊕ 𝑏𝑘−1 if 𝑘 > 1 .

Let Prefix denote the algorithm that directly
implements the recursion in Equation 2.1. Given
an array a and indices start ≤ end , the function
Prefix(a, start , end) computes the prefix sum in the
range [start , end ] of a in 𝑂(end − start) time. Similarly,
the suffix-sums operation is the reverse of the prefix
sum and computes the sum right-to-left rather than left-
to-right. Let Suffix(a, start , end) be the corresponding
algorithm for suffix sums.

3 Included Sums
This section presents the bidirectional box-sum algo-
rithm (BDBS) algorithm to compute the included
sum along an arbitrary dimension, which is used as a
main subroutine in the box-complement algorithm for
excluded sums. As a warm-up, we will first describe how
to solve the included-sums problem in one dimension and
extend the technique to higher dimensions. We include
the one-dimensional case for clarity, but the main focus
of this paper is the multidimensional case.

We will sketch the subroutines for higher dimensions
in this section. The full version of the paper includes all
the pseudocode and omitted proofs for BDBS in 1D. We
sketch the key subroutines in higher dimensions and omit
them from this paper because they straightforwardly
extend the computation from 1 dimension.

Included Sums in 1D Before investigating the in-
cluded sums in higher dimensions, let us first turn
our attention to the 1D case for ease of understand-
ing. Figure 13 presents an algorithm BDBS-1D which
takes as input a list 𝐴 of length 𝑁 and a (scalar)
box size1 𝑘 and outputs a list 𝐴′ of corresponding in-
cluded sums. At a high level, the BDBS-1D algorithm
generates two intermediate lists 𝐴𝑝 and 𝐴𝑠, each of
length 𝑁 , and performs 𝑁/𝑘 prefix and suffix sums of
length 𝑘 on each intermediate list. By construction, for
𝑥 = 1, 2, . . . , 𝑁 , we have 𝐴𝑝[𝑥] = 𝐴[𝑘⌊𝑥/𝑘⌋ :𝑥 + 1], and
𝐴𝑠[𝑥] = 𝐴[𝑥 : 𝑘⌈(𝑥 + 1)/𝑘⌉].

Finally, BDBS-1D uses 𝐴𝑝 and 𝐴𝑠 to compute
the included sum of size 𝑘 for each coordinate in one
pass. Figure 5 illustrates the ranged prefix and suffix
sums in BDBS-1D, and Figure 6 presents a concrete
example of the computation.

1For simplicity in the algorithm descriptions and pseudocode,
we assume that 𝑛𝑖 mod 𝑘𝑖 = 0 for all dimensions 𝑖 = 1, 2, . . . , 𝑑. In
implementations, the input can either be padded with the identity
to make this assumption hold, or it can add in extra code to deal
with unaligned boxes.
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Figure 5: An illustration of the computation in the bidirec-
tional box-sum algorithm. The arrows represent prefix and
suffix sums in runs of size 𝑘, and the shaded region repre-
sents the prefix and suffix components of the region of size 𝑘
outlined by the dotted lines.
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Figure 6: An example of computing the 1D included sum
using the bidirectional box-sum algorithm, where 𝑁 = 8 and
𝑘 = 4. The input array is 𝐴, the 𝑘-wise prefix and suffix
sums are stored in 𝐴𝑝 and 𝐴𝑠, respectively, and the output
is in 𝐴′.

BDBS-1D solves the included-sums problem on
an array of size 𝑁 in Θ(𝑁) time and Θ(𝑁) space.
First, it uses two temporary arrays to compute the
prefix and suffix as illustrated in Figure 5 in Θ(𝑁)
time. It then makes one more pass through the data
to compute the included sum, requiring Θ(𝑁) time.
Figure 13 in Appendix B contains the full pseudocode
for BDBS-1D.

Generalizing to Arbitrary Dimensions The main
focus of this work is multidimensional included and
excluded sums. Computing the included sum along
an arbitrary dimension is almost exactly the same
as computing it along 1 dimension in terms of the
underlying ranged prefix and suffix sums. We sketch
an algorithm BDBS that generalizes BDBS-1D to
arbitrary dimensions.

Let 𝒜 be a 𝑑-dimensional tensor with 𝑁 elements
and let k be a box size. The BDBS algorithm computes
the included sum along dimensions 𝑖 = 1, 2, . . . , 𝑑 in turn.
After performing the included-sum computation along
dimensions 1, 2, . . . , 𝑖, every coordinate in the output 𝒜𝑖

contains the included sum in each dimension up to 𝑖:

𝒜𝑖[𝑥1, 𝑥2, . . . , 𝑥𝑑] =⨁︁
𝒜[𝑥1 : 𝑥1 + 𝑘2, . . . , 𝑥𝑖 : 𝑥𝑖 + 𝑘𝑖⏟  ⏞  

𝑖

, 𝑥𝑖+2, . . . , 𝑥𝑑⏟  ⏞  
𝑑 − 𝑖

].

Overall, BDBS computes the full included sum of a
tensor with 𝑁 elements in Θ(𝑑𝑁) time and Θ(𝑁) space
by performing the included sum along each dimension
in turn.

Although we cannot directly use BDBS to solve
the strong excluded-sums problem, the next sections
demonstrate how to use the BDBS technique as a key
subroutine in the box-complement algorithm for strong
excluded sums.

4 Excluded Sums and the Box Complement
The main insight in this section is the formulation of the
excluded sum as the recursive “box complement”. We
show how to partition the excluded region into 2𝑑 non-
overlapping parts in 𝑑 dimensions. This decomposition
of the excluded region underlies the box-complement for
strong excluded sums in the next section.

First, let’s see how the formulation of the “box
complement” relates to the excluded sum. At a high level,
given a box 𝐵, a coordinate x is in the “𝑖-complement”
of 𝐵 if and only if x is “out of range” in some dimension
𝑗 ≤ 𝑖, and “in the range” for all dimensions greater
than 𝑖.

Definition 2. (Box Complement) Given a 𝑑-
dimensional coordinate domain 𝑈 and a dimension
𝑖 ∈ {1, 2, . . . , 𝑑}, the i-complement of a box 𝐵 cornered
at coordinates x = (𝑥1, . . . , 𝑥𝑑) and x′ = (𝑥′

1, . . . , 𝑥
′
𝑑) is

the set
𝐶𝑖(𝐵) = {(𝑦1, . . . , 𝑦𝑑) ∈ 𝑈 : there exists 𝑗 ∈ [1, 𝑖]

such that 𝑦𝑗 /∈ [𝑥𝑗 , 𝑥
′
𝑗), and for all 𝑚 ∈ [𝑖 + 1, 𝑑],

𝑦𝑚 ∈ [𝑥𝑚, 𝑥′
𝑚)}.

Given a box 𝐵, the reduction of all elements at
coordinates in 𝐶𝑑(𝐵) is exactly the excluded sum with
respect to 𝐵. The box complement recursively partitions
an excluded region into disjoint sets of coordinates.

Theorem 4.1. (Recursive Box-complement) Let
𝐵 be a box cornered at coordinates x = (𝑥1, . . . , 𝑥𝑑) and
x′ = (𝑥′

1, . . . , 𝑥
′
𝑑) in some coordinate domain 𝑈 . The

𝑖-complement of 𝐵 can be expressed recursively in terms
of the (𝑖− 1)-complement of 𝐵 as follows:

𝐶𝑖(𝐵) = ( : , . . . , : , :𝑥𝑖⏟  ⏞  
𝑖

, 𝑥𝑖+1 :𝑥′
𝑖+1, . . . , 𝑥𝑑 :𝑥′

𝑑⏟  ⏞  
𝑑−𝑖

)∪

( : , . . . , :⏟  ⏞  
𝑖−1

, 𝑥′
𝑖 : , 𝑥𝑖+1 :𝑥′

𝑖+1, . . . , 𝑥𝑑 :𝑥′
𝑑⏟  ⏞  

𝑑−𝑖

) ∪ 𝐶𝑖−1(𝐵),
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where 𝐶0(𝐵) = ∅.

Proof. For simplicity of notation, let RHS𝑖(𝐵) be the
right-hand side of the equation in the statement of The-
orem 4.1. Let y = (𝑦1, . . . , 𝑦𝑑) be a coordinate. In order
to show the equality, we will show that y ∈ 𝐶𝑖(𝐵) if and
only if y ∈ RHS𝑖(𝐵).
Forward Direction: y ∈ 𝐶𝑖(𝐵)→ y ∈ RHS𝑖(𝐵).
We proceed by case analysis when y ∈ 𝐶𝑖(𝐵). Let 𝑗 ≤ 𝑖
be the highest dimension at which y is “out of range,”
or where 𝑦𝑗 < 𝑥𝑗 or 𝑦𝑗 ≥ 𝑥′

𝑗 .

Case 1: 𝑗 = 𝑖.
Definition 2 and 𝑗 = 𝑖 imply that either 𝑦𝑖 <
𝑥𝑖 or 𝑦𝑖 ≥ 𝑥′

𝑖, and 𝑥𝑚 ≤ 𝑦𝑚 ≤ 𝑥′
𝑚 for all

𝑚 > 𝑖. By definition, 𝑦𝑖 < 𝑥𝑖 implies y ∈(︀
: , . . . , : , :𝑥𝑖, 𝑥𝑖+1 :𝑥′

𝑖+1, . . . , 𝑥𝑑 :𝑥′
𝑑

)︀
. Similarly, 𝑦𝑖 ≥

𝑥′
𝑖 implies y ∈

(︀
: , . . . , : , 𝑥′

𝑖 :𝑥𝑖+1 :𝑥′
𝑖+1, . . . , 𝑥𝑑 :𝑥′

𝑑

)︀
.

These are exactly the first two terms in RHS𝑖(𝐵).

Case 2: 𝑗 < 𝑖.
Definition 2 and 𝑗 < 𝑖 imply that y ∈ 𝐶𝑖−1(𝐵).

Backwards Direction: y ∈ RHS𝑖(𝐵)→ y ∈ 𝐶𝑖(𝐵).
We again proceed by case analysis.

Case 1: y ∈
(︀

: , . . . , : , :𝑥𝑖, 𝑥𝑖+1 :𝑥′
𝑖+1, . . . , 𝑥𝑑 :𝑥′

𝑑

)︀
or

y ∈
(︀

: , . . . , : , 𝑥′
𝑖 : , 𝑥𝑖+1 :𝑥′

𝑖+1, . . . , 𝑥𝑑 :𝑥′
𝑑

)︀
.

Definition 2 implies y ∈ 𝐶𝑖(𝐵) because there exists
some 𝑗 ≤ 𝑖 (in this case, 𝑗 = 𝑖) such that 𝑦𝑗 < 𝑥𝑗 and
𝑥𝑚 ≤ 𝑦𝑚 < 𝑥′

𝑚 for all 𝑚 > 𝑖.

Case 2: y ∈ 𝐶𝑖−1(𝐵).
Definition 2 implies that there exists 𝑗 in the range
1 ≤ 𝑗 ≤ 𝑖 − 1 such that 𝑦𝑗 < 𝑥𝑗 or 𝑦𝑗 ≥ 𝑥′

𝑗 and that
for all 𝑚 ≥ 𝑖, we have 𝑥𝑚 ≤ 𝑦𝑚 < 𝑥′

𝑚. Therefore,
y ∈ 𝐶𝑖−1(𝐵) implies y ∈ 𝐶𝑖(𝐵) since there exists some
𝑗 ≤ 𝑖 (in this case, 𝑗 < 𝑖) where 𝑦𝑗 < 𝑥𝑗 or 𝑦𝑗 ≥ 𝑥′

𝑗 and
𝑥𝑚 ≤ 𝑦𝑚 < 𝑥′

𝑚 for all 𝑚 > 1.

Therefore, 𝐶𝑖(𝐵) can be recursively expressed as
RHS𝑖(𝐵).

In general, unrolling the recursion in Theorem 4.1
yields 2𝑑 disjoint partitions that exactly comprise the
excluded sum with respect to a box.

Corollary 4.1. (Excluded-sum Components)
The excluded sum can be represented as the union of 2𝑑
disjoint sets of coordinates as follows:

𝐶𝑑(𝐵) =

𝑑⋃︁
𝑖=1

⎛⎜⎝( : , . . . , :⏟  ⏞  
𝑖−1

, :𝑥𝑖, 𝑥𝑖+1 :𝑥′
𝑖+1, . . . , 𝑥𝑑 :𝑥′

𝑑⏟  ⏞  
𝑑−𝑖

)

∪ ( : , . . . , :⏟  ⏞  
𝑖−1

, 𝑥𝑖 + 𝑘𝑖 : , 𝑥𝑖+1 :𝑥′
𝑖+1, . . . , 𝑥𝑑 :𝑥′

𝑑⏟  ⏞  
𝑑−𝑖

)

⎞⎟⎠ .

We use the box-complement formulation in the next
section to efficiently compute the excluded sums on a
tensor by reducing in disjoint regions of the tensor.

5 Box-Complement Algorithm
This section describes and analyzes the box-complement
algorithm for strong excluded sums, which efficiently
implements the dimension reduction in Section 4. The
box-complement algorithm relies heavily on prefix, suffix,
and included sums as described in Sections 2 and 3.

Given a 𝑑-dimensional tensor 𝒜 of size 𝑁 and a
box size k, the box-complement algorithm solves the
excluded-sums problem with respect to k for coordinates
in 𝒜 in Θ(𝑑𝑁) time and Θ(𝑁) space. Appendix C
contains all omitted pseudocode and proofs for the serial
box-complement algorithm.

Algorithm Sketch At a high level, the box-
complement algorithm proceeds by dimension reduction.
That is, the algorithm takes 𝑑 dimension-reduction steps,
where each step adds two of the components from Corol-
lary 4.1 to each element in the output tensor. In the
𝑖th dimension-reduction step, the box-complement algo-
rithm computes the 𝑖-complement of 𝐵 (Definition 2)
for all coordinates in the tensor by performing a prefix
and suffix sum along the 𝑖th dimension and then per-
forming the BDBS technique along the remaining 𝑑− 𝑖
dimensions. After the 𝑖th dimension-reduction step, the
box-complement algorithm operates on a tensor of 𝑑− 𝑖
dimensions because 𝑖 dimensions have been reduced so
far via prefix sums. Figure 7 presents an example of
the dimension reduction in 2 dimensions, and Figure 8
illustrates the recursive box-complement in 3 dimensions.

Prefix and Suffix Sums In the 𝑖th dimension re-
duction step, the box-complement algorithm uses pre-
fix and suffix sums along the 𝑖th dimension to reduce
the elements “out of range” along the 𝑖th dimension
in the 𝑖-complement. That is, given a tensor 𝒜 of
size 𝑁 = 𝑛1 · 𝑛2 · · ·𝑛𝑑 and a number 𝑖 < 𝑑 of dimen-
sions reduced so far, we define a subroutine Prefix-
Along-Dim(𝒜, 𝑖) that fixes the first 𝑖 dimensions at
𝑛1, . . . , 𝑛𝑖 (respectively), and then computes the prefix
sum along dimension 𝑖+1 for all remaining rows in dimen-
sions 𝑖 + 2, . . . , 𝑑. The pseudocode for Prefix-Along-
Dim(𝒜, 𝑖) can be found in Figure 14 in Appendix C,
and the proof that it incurs 𝑂

(︁∏︀𝑑
𝑗=𝑖+1 𝑛𝑗

)︁
time can be

found in Appendix C.
The subroutine Prefix-Along-Dim computes the

reduction of elements “out of range” along dimension 𝑖.
That is, after Prefix-Along-Dim(𝒜, 𝑖), for each coor-
dinate 𝑥𝑖+1 = 1, 2, . . . , 𝑛𝑖+1 along dimension 𝑖+ 1, every
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(i) Prefix along 
each row

(ii) 
BDBS 
along 
each 

column

fffffff
X

(a)

(i) Suffix along 
each row

fffffff
X ffffff

f (ii) 
BDBS 
along 
each 

column

(b)

fffffff
X ffffff

ffffff

fffffff

Prefix

(c)

Suffixfffffff
X ffffff

ffffff

fffffff

ffffff

fffffff

fffff

(d)

Figure 7: Steps for computing the excluded sum in 2 dimensions with included sums on prefix and suffix sums. The steps
are labeled in the order they are computed. The 1-complement (a) prefix and (b) suffix steps perform a prefix and suffix
along dimension 1 and an included sum along dimension 2. The numbers in (a),(b) represent the order of subroutines
in those steps. The 2-complement (c) prefix and (d) suffix steps perform a prefix and suffix sum on the reduced array,
denoted by the blue rectangle, from step (a). The red box denotes the excluded region, and solid lines with arrows denote
prefix or suffix sums along a row or column. The long dashed line represents the included sum along each column.

Full Prefix / Suffix 
Dimensions:

Included Sum 
Dimensions:

3

2
1 1

2

1

2, 3

1, 2

3

3

1
2

3

1, 2, 3

None
(a) (b) (c)

Figure 8: An example of the recursive box-complement in 3
dimensions with dimensions labeled 1, 2, 3. The subfigures
(a), (b), and (c) illustrate the 1-, 2-, and 3-complement,
respectively. The blue region represents the coordinates
inside the box, and the regions outlined by dotted lines
represent the partitions defined by Corollary 4.1. For each
partition, the face against the edge of the tensor is highlighted
in green.

coordinate in the (dimension-reduced) output 𝒜′ con-
tains the prefix up to that coordinate in dimension 𝑖+ 1:

𝒜′[𝑛1, . . . , 𝑛𝑖⏟  ⏞  
𝑖

, 𝑥𝑖+1, 𝑥𝑖+2, . . . , 𝑥𝑑⏟  ⏞  
𝑑 − 𝑖 − 1

] =

⨁︁
𝒜[𝑛1, . . . , 𝑛𝑖⏟  ⏞  

𝑖

, :𝑥𝑖+1 + 1, 𝑥𝑖+2, . . . , 𝑥𝑑⏟  ⏞  
𝑑 − 𝑖 − 1

].

Since the similar subroutine Suffix-Along-Dim
has almost exactly the same analysis and structure, we
omit its discussion.

Included Sums In the 𝑖th dimension reduction step,
the box-complement algorithm uses the BDBS technique
along the 𝑖th dimension to reduce the elements “in range”
along the 𝑖th dimension in the 𝑖-complement. That is,
given a tensor 𝒜 of size 𝑁 = 𝑛1 · 𝑛2 · · ·𝑛𝑑 and a number
𝑖 < 𝑑 of dimensions reduced so far, we define a subroutine
BDBS-Along-Dim.

BDBS-Along-Dim computes the included sum for

each row along a specified dimension after dimension
reduction. Let 𝒜 be a 𝑑-dimensional tensor, k be a
box size, 𝑖 be the number of reduced dimensions so far,
and 𝑗 be the dimension to compute the included sum
along such that 𝑗 > 𝑖. BDBS-Along-Dim(𝒜,k, 𝑖, 𝑗)
computes the included sum along the 𝑗th dimension
for all rows (𝑛1, . . . , 𝑛𝑖, : , . . . , : ). That is, for each
coordinate x = (𝑛1, . . . , 𝑛𝑖, 𝑥𝑖+1, . . . , 𝑥𝑑 ), the output
tensor 𝒜′ contains the included sum along dimension 𝑗:

𝒜′[x] =
⨁︁
𝒜[𝑛1, . . . , 𝑛𝑖⏟  ⏞  

𝑖

, 𝑥𝑖+1, . . . , 𝑥𝑗⏟  ⏞  
𝑗 − 𝑖

,

𝑥𝑗+1 :𝑥𝑗+1 + 𝑘𝑗+1, 𝑥𝑗+2, . . . , 𝑥𝑑⏟  ⏞  
𝑑 − 𝑗 − 1

].

BDBS-Along-Dim(𝒜,k, 𝑖, 𝑗) takes Θ
(︁∏︀𝑑

ℓ=𝑖+1 𝑛ℓ

)︁
time because it iterates over

(︁∏︀𝑑
ℓ=𝑖+1 𝑛ℓ

)︁
/𝑛𝑗+1 rows

and runs in Θ(𝑛𝑗+1) time per row. It takes Θ(𝑁) space
using the same technique as BDBS-1D.

Adding in the Contribution Each dimension-
reduction step must add its respective contribution to
each element in the output. Given an input tensor
𝒜 and output tensor 𝒜′, both of size 𝑁 , the function
Add-Contribution takes Θ(𝑁) time to add in the
contribution with a pass through the tensors. The full
pseudocode can be found in Figure 15 in Appendix C.

Putting It All Together Finally, we will see how
to use the previously defined subroutines to describe
and analyze the box-complement algorithm for ex-
cluded sums. Figure 9 presents pseudocode for the box-
complement algorithm. Each dimension-reduction step
has a corresponding prefix and suffix step to add in the
two components in the recursive box-complement. Given
an input tensor 𝒜 of size 𝑁 , the box-complement algo-
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rithm takes Θ(𝑁) space because all of its subroutines
use at most a constant number of temporaries of size 𝑁 ,
as seen in Figure 9.

Given a tensor 𝒜 as input, the box-complement
algorithm solves the excluded-sums problem by com-
puting the recursive box-complement components from
Corollary 4.1. By construction, for dimension 𝑖 ∈ [1, 𝑑],
the prefix-sum part of the 𝑖th dimension-reduction
step outputs a tensor 𝒜𝑝 such that for all coordinates
x = (𝑥1, . . . , 𝑥𝑑), we have

𝒜𝑝[𝑥1, . . . , 𝑥𝑑] =
⨁︁
𝒜[ : , . . . , :⏟  ⏞  

𝑖

, :𝑥𝑖+1,

𝑥𝑖+2 :𝑥𝑖+2 + 𝑘𝑖+2, . . . , 𝑥𝑑 :𝑥𝑑 + 𝑘𝑑⏟  ⏞  
𝑑 − 𝑖 − 1

].

Similarly, the suffix-sum step constructs a tensor 𝒜𝑠

such that for all x,
𝒜𝑠[𝑥1, . . . , 𝑥𝑑] =

⨁︁
𝒜[ : , . . . , :⏟  ⏞  

𝑖

, 𝑥𝑖+1 + 𝑘𝑖+1 : ,

𝑥𝑖+2 :𝑥𝑖+2 + 𝑘𝑖+2, . . . , 𝑥𝑑 :𝑥𝑑 + 𝑘𝑑⏟  ⏞  
𝑑 − 𝑖 − 1

].

We can now analyze the performance of the box-
complement algorithm.

Theorem 5.1. (Time of Box-complement) Given
a 𝑑-dimensional tensor 𝒜 of size 𝑁 = 𝑛1 · 𝑛2 · . . . · 𝑛𝑑,
Box-Complement solves the excluded-sums problem
in Θ(𝑑𝑁) time.

Proof. We analyze the prefix step (since the suffix step
is symmetric, it has the same running time). Let
𝑖 ∈ {1, . . . , 𝑑} denote a dimension.

The 𝑖th dimension reduction step in
Box-Complement involves 1 prefix step and (𝑑 − 𝑖)
included sum calls, which each have 𝑂

(︁∏︀𝑑
𝑗=𝑖 𝑛𝑗

)︁
time. Furthermore, adding in the contribution at each
dimension-reduction step takes Θ(𝑁) time. The total
time over 𝑑 steps is therefore

Θ

(︃
𝑑∑︀

𝑖=1

(︃
(𝑑− 𝑖 + 1)

𝑑∏︀
𝑗=𝑖

𝑛𝑗 + 𝑁

)︃)︃
. Adding in the

contribution is clearly Θ(𝑑𝑁) in total.
Next, we bound the runtime of the prefix and in-

cluded sums. In each dimension-reduction step, reduc-
ing the number of dimensions of interest exponentially
decreases the size of the considered tensor. That is, di-
mension reduction exponentially reduces the size of the
input:

∏︀𝑑
𝑗=𝑖 𝑛𝑗 ≤ 𝑁/2𝑖−1. The total time required to

compute the box-complement components is therefore
𝑑∑︁

𝑖=1

(𝑑− 𝑖 + 1)

𝑑∏︁
𝑗=𝑖

𝑛𝑗 ≤
𝑑∑︁

𝑖=1

(𝑑− 𝑖 + 1)
𝑁

2𝑖−1

≤ 2(𝑑 + 2−𝑑 − 1)𝑁 = Θ(𝑑𝑁).

Therefore, the total time of Box-Complement is
Θ(𝑑𝑁).

Box-Complement(𝒜,k)

1 // Input: Tensor 𝒜 with 𝑑-dimensions, box size k
// Output: Tensor 𝒜′ with size and dimensions
// matching 𝒜 containing the excluded sum.

2 init 𝒜′ with the same size as 𝒜
3 𝒜𝑝 ← 𝒜;𝒜𝑠 ← 𝒜
4 // Current dimension-reduction step
5 for i ← 1 to d
6 // Saved from previous dimension-reduction step.
7 𝒜𝑝 ← 𝒜 reduced up to dimension 𝑖− 1
8 𝒜𝑠 ← 𝒜𝑝 // Save input to suffix step
9 // PREFIX STEP

// Reduced up to 𝑖 dimensions.
10 Prefix-Along-Dim along
11 dimension i on 𝒜𝑝.
12 𝒜 ← 𝒜𝑝 // Save for next round
13 // Do included sum on dimensions [𝑖 + 1, 𝑑].
14 for j ← i + 1 to d
15 // 𝒜𝑝 reduced up to 𝑖 dimensions
16 BDBS-Along-Dim on
17 dimension 𝑗 in 𝒜𝑝

18 // Add into result
19 Add-Contribution from 𝒜𝑝 into 𝒜′

20
21 // SUFFIX STEP

// Do suffix sum along dimension 𝑖
22 Suffix-Along-Dim along
23 dimension 𝑖 in 𝒜𝑠

24 // Do included sum on dimensions [𝑖 + 1, 𝑑]
25 for j ← i + 1 to d
26 // 𝒜𝑠 reduced up to 𝑖 dimensions
27 BDBS-Along-Dim on
28 dimension 𝑗 in 𝒜𝑠

29 // Add into result
30 Add-Contribution from 𝒜𝑠 into 𝒜′

31 return 𝒜′

Figure 9: Pseudocode for the box-complement algorithm.
For ease of presentation, we omit the exact parameters to
the subroutines and describe their function in the algorithm.
The pseudocode with parameters can be found in Figure 16.

6 Experimental Evaluation
This section presents an empirical evaluation of strong
and weak excluded-sums algorithms. In 3 dimensions,
we compare strong excluded-sums algorithms: specifi-
cally, we evaluate the box-complement algorithm and
variants of the corners algorithm and find that the box-
complement outperforms the corners algorithm given

9 Copyright © 2021 by SIAM
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similar space. Furthermore, we compare weak excluded-
sums algorithms in higher dimensions. Lastly, to simu-
late a more expensive operator than numeric addition
when reducing, we compare the box-complement algo-
rithm and variants of the corners algorithm using an
artificial slowdown.

Experimental Setup We implemented all algorithms
in C++. We used the Tapir/LLVM [27] branch of the
LLVM [23, 24] compiler (version 9) with the -O3 and
-march=native and -flto flags.

All experiments were run on a 8-core 2-way hyper-
threaded Intel Xeon CPU E5-2666 v3 @ 2.90GHz with
30GB of memory from AWS [1]. For each test, we took
the median of 3 trials.

To gather empirical data about space usage, we
interposed malloc and free. The theoretical space usage
of the different algorithms can be found in Table 1.

Strong Excluded Sums in 3D Figure 3 summarizes
the results of our evaluation of the box-complement and
corners algorithm in 3 dimensions with a box length of
𝑘1 = 𝑘2 = 𝑘3 = 4 (for a total box volume of 𝐾 = 64)
and number of elements 𝑁 = 681472. We tested with
varying 𝑁 but found that the time and space per element
were flat (full results in Appendix D). We found that
the box-complement algorithm outperforms the corners
algorithm by about 1.4× when given similar amounts of
space, though the corners algorithm with 2× the space
as the box-complement algorithm was 2× faster.

We explored two different methods of using extra
space in the corners algorithm based on the computation
tree of prefixes and suffixes: (1) storing the spine of the
computation tree to asymptotically reduce the running
time, and (2) storing the leaves of the computation tree to
reduce passes through the output. Although storing the
leaves does not asymptotically affect the behavior of the
corners algorithm, we found that reducing the number
of passes through the output has significant effects on
empirical performance. Storing the spine did not improve
performance, because the runtime is dominated by the
number of passes through the output.

Excluded Sums With Different Operators Most
of our experiments used numeric addition for the ⊕
operator. Because some applications, such as FMM,
involve much more costly ⊕ operators, we studied
how the excluded-sum algorithms scale with the cost
of ⊕. To do so, we added a tunable slowdown to the
invocation of ⊕ in the algorithms. Specifically, they call
an unoptimized implementation of the standard recursive
Fibonacci computation. By varying the argument to the
Fibonacci function, we can simulate ⊕ operators that

Figure 10: The scalability of excluded-sum algorithms as
a function of the cost of operator ⊕ on a 3D domain of
𝑁 = 4096 elements. The horizontal axis is the time in
nanoseconds to execute ⊕. The vertical axis represents the
time per element of the given algorithm divided by the time
for ⊕. We inflated the time of ⊕ using increasingly large
arguments to the standard recursive implementation of a
Fibonacci computation.

take different amounts of time.
Figure 10 summarizes our findings. We ran the

algorithms on a 3D domain of 𝑁 = 4096 elements.
(Although this domain may seem small, Appendix D
shows that the results are relatively insensitive to domain
size.) For inexpensive ⊕ operators, the box-complement
algorithm is the second fastest, but as the cost of ⊕
increases, the box-complement algorithm dominates.
The reason for this outcome is that box-complement
performs approximately 12 ⊕ operations per element
in 3D, whereas the most efficient corners algorithm
performs about 22 ⊕ operations. As ⊕ becomes more
costly, the time spent executing ⊕ dominates the other
bookkeeping overhead.

Weak Excluded Sums in Higher Dimensions
Figure 4 presents the results of our evaluation of weak
excluded-sum algorithms in higher dimensions. For all
dimensions 𝑖 = 1, 2, . . . , 𝑑, we set the box length 𝑘𝑖 = 8
and chose a number of elements 𝑁 to be a perfect power
of dimension 𝑖. Table 1 presents the asymptotic runtime
of the different excluded-sum algorithms.

The weak naive algorithm for excluded sums with
nested loops outperforms all of the other algorithms up
to 2 dimensions because its runtime is dependent on the
box volume, which is low in smaller dimensions. Since
its runtime grows exponentially with the box length,
however, we limited it to 5 dimensions.

The summed-area table algorithm outperforms the

10 Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



BDBS and box-complement algorithms up to 6 dimen-
sions, but its runtime scales exponentially in the number
of dimensions.

Finally, the BDBS and box-complement algorithms
scale linearly in the number of dimensions and outper-
form both naive and summed-area table methods in
higher dimensions. Specifically, the box-complement al-
gorithm outperforms the summed-area table algorithm
by between 1.3× and 4× after 6 dimensions. The BDBS
algorithm demonstrates an advantage to having an in-
verse: it outperforms the box-complement algorithm by
1.1× to 4×. Therefore, the BDBS algorithm dominates
the box-complement algorithm for weak excluded sums.

7 Conclusion
In this paper, we introduced the box-complement algo-
rithm for the excluded-sums problem, which improves
the running time of the state-of-the-art corners algo-
rithm from Ω(2𝑑𝑁) to Θ(𝑑𝑁) time. The space usage
of the box-complement algorithm is independent of the
number of dimensions, while the corners algorithm may
use space dependent on the number of dimensions to
achieve its running-time lower bound.

The three new algorithms from this paper parallelize
straightforwardly. In the work/span model [10], all
three algorithms are work-efficient, achieving Θ(𝑑𝑁)
work. The BDBS and BDBSC algorithms achieve
Θ(𝑑 log𝑁) span, and the box-complement algorithm
achieves Θ(𝑑2 log𝑁) span.
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A Analysis of Corners Algorithm
This section presents an analysis of the time and space
usage of the corners algorithm [13] for the excluded-
sums problem. The original article that proposed the
corners algorithm did not include an analysis of its
performance. As we will see, the runtime of the corners
algorithm is a function of the space it is allowed.

Algorithm Description. Given a 𝑑-dimensional
tensor 𝒜 of size 𝑁 and a box 𝐵, the corners algorithm
partitions the excluded region 𝐶𝑑(𝐵) into 2𝑑 disjoint
regions corresponding to the corners of the box. Each
excluded sum is the sum of the reductions of each of the
corresponding 2𝑑 regions. The corners algorithm com-
putes the reduction of each partition with a combination
of prefix and suffix sums over the entire tensor and saves
work by reusing prefixes and suffixes in overlapping re-
gions. Figure 11 illustrates an example of the corners
algorithm.

PP

(1,1)

(x1, x2)

PS

SSSP

k1

k2

n1

n2

Figure 11: An example of the corners algorithm in 2
dimensions on an 𝑛1×𝑛2 matrix using a (𝑘1, 𝑘2)-box cornered
at (𝑥1, 𝑥2). The grey regions represent excluded regions
computed via prefix and suffix sums, and the black boxes
correspond to the corner of each region with the relevant
contribution. The labels 𝑃𝑃, 𝑃𝑆, 𝑆𝑃, 𝑆𝑆 represent the
combination of prefixes and suffixes corresponding to each
vertex.

We can represent each length-𝑑 combination of
prefixes and suffixes as a length-𝑑 binary string where
a 0 or 1 in the 𝑖-th position corresponds to a prefix or
suffix (resp.) at depth 𝑖. As illustrated in Figure 12, the
corners algorithm defines a computation tree where each
node represents a combination of prefixes and suffixes,
and each edge from depth 𝑖 − 1 to 𝑖 represents a full
prefix or suffix along dimension 𝑖. The total height of
this computation tree is 𝑑, so there are 2𝑑 leaves.

Analysis. The most naive implementation of the
corners algorithm that computes every root-to-leaf path

P (0) S (1)

PP 
(00)

PS 
(01)

SP 
(10)

SS 
(11)…

height = d

PP…P 
(00…0)

SS…S 
(11…1)

…

Figure 12: The dependency tree of computations in the
corners algorithm. P and S represent full-tensor prefix and
suffix sums, respectively. Each leaf is a string of length 𝑑 that
denotes a series of prefix and suffix sums along the entire
tensor.

without reusing computation between paths takes Θ(𝑁)
space, but Θ(𝑑𝑁) time per leaf, for total time Θ(𝑑2𝑑𝑁).
We will see how to use extra space to reuse computation
between paths and reduce the total time.

Theorem A.1. (Time / Space Tradeoff) Given a
multiplicative space allowance 𝑐 such that 1 ≤ 𝑐 ≤ 𝑑,
the corners algorithm solves the excluded-sums problem
in Θ((2𝑐+1+2𝑑(𝑑−𝑐)+2𝑑)𝑁) time if it is allowed Θ(𝑐𝑁)
space.

Proof. The corners algorithm must traverse the entire
computation tree in order to compute all of the leaves. If
it follows a depth-first traversal of the tree, one possible
use of the extra Θ(𝑐𝑁) allowed space is to keep the
intermediate combination of prefix and suffices at the first
𝑐 internal nodes along the current root-to-leaf path in
the traversal. We will analyze this scheme in terms of 1)
the amount of time that each leaf requires independently,
and 2) the total shared work between leaves. The total
time of the algorithm is the sum of these two components.
Independent work: For each leaf, if the first 𝑐 prefixes
and suffixes have been computed along its root-to-leaf
path, there are an additional (𝑑 − 𝑐) prefix and suffix
computations required to compute that leaf. Therefore,
each leaf takes Θ((𝑑− 𝑐)𝑁) additional time outside of
the shared computation, for a total of Θ(2𝑑(𝑑 − 𝑐)𝑁)
time.
Shared work: The remaining time of the algorithm is
the amount of time it takes to compute the higher levels
of the tree up to depth 𝑐 given a 𝑐 factor in space. Given
a node 𝑣 at depth 𝑐 with position 𝑖 such that 1 ≤ 𝑖 < 𝑐,
the amount of time it takes to compute the intermediate
sums along the root-to-leaf path to 𝑣 depends on the
difference in the bit representation between 𝑖 and 𝑖− 1.
Specifically, if 𝑖 and 𝑖 − 1 differ in 𝑏 bits, it takes 𝑏𝑁
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additional time to store the intermediate sums for node 𝑖
at depth 𝑐. In general, the number of nodes that differ in
𝑏 ∈ {1, 2, . . . , 𝑐} positions at depth 𝑐 is 2𝑐−𝑏. Therefore,
the total time of computing the intermediate sums is

𝑁

𝑐∑︁
𝑏=1

𝑏2𝑐−𝑏 ≈ 2𝑐+1𝑁 = Θ(2𝑐𝑁).

Putting it together: Each leaf also requires Θ(𝑁)
time to add in the contribution. Therefore, the total

time is Θ

⎛⎜⎝ 2𝑐𝑁⏟ ⏞ 
shared

+ 2𝑑(𝑑− 𝑐)𝑁⏟  ⏞  
independent

+ 2𝑑𝑁⏟ ⏞ 
contribution

⎞⎟⎠.

The time of the corners algorithm is lower bounded
by Ω(2𝑑𝑁) and minimized when 𝑐 = Θ(𝑑). Given Θ(𝑁)
space, the corners algorithm solves the excluded-sums
problem in 𝑂(2𝑑𝑑𝑁) time. Given Θ(𝑑𝑁) space, the
corners algorithm solves the excluded-sums problem in
𝑂(2𝑑𝑁) time.
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B Included Sums Appendix

BDBS-1D(𝐴,𝑁, 𝑘)

1 // Input: List 𝐴 of size 𝑁 and
// included-sum length 𝑘.
// Output: List 𝐴′ of size 𝑁 where each
// entry 𝐴′[𝑖] = 𝐴[𝑖 : 𝑖 + 𝑘] for 𝑖 = 1, 2, . . . 𝑁 .

2 allocate A′ with 𝑁 slots
3 𝐴𝑝 ← 𝐴;𝐴𝑠 ← 𝐴
4 for i ← 1 to N /k
5 // 𝑘-wise prefix sum along 𝐴𝑝

6 Prefix(𝐴𝑝, (𝑖− 1)𝑘 + 1, 𝑖𝑘)
7 // 𝑘-wise suffix sum along 𝐴𝑠

8 Suffix(𝐴𝑠, (𝑖− 1)𝑘 + 1, 𝑖𝑘)
9 for i ← 1 to N // Combine into result

10 if i mod 𝑘 = 0
11 𝐴′[i ]← 𝐴𝑠[i ]
12 else
13 𝐴′[i ]← 𝐴𝑠[i ]⊕𝐴𝑝[i + k − 1]
14 return 𝐴′

Figure 13: Pseudocode for the 1D included sum.

Lemma B.1. (Correctness in 1D) BDBS-1D
solves the included sums problem in 1 dimension.

Proof. Consider a list 𝐴 with 𝑁 elements and box
length 𝑘. We will show that for each 𝑥 = 1, 2, . . . , 𝑁 ,
the output 𝐴′[𝑥] contains the desired sum. For
𝑥 mod 𝑘 = 1, this holds by construction. For
all other 𝑥, the previously defined prefix and suffix
sum give the desired result. Recall that 𝐴′[𝑥] =
𝐴𝑝[𝑥 + 𝑘 − 1] + 𝐴𝑠[𝑥], 𝐴𝑠[𝑥] = 𝐴[𝑥 : ⌈(𝑥 + 1)/𝑘⌉ · 𝑘],
and 𝐴𝑝[𝑥 + 𝑘 − 1] = 𝐴[⌊(𝑥 + 𝑘 − 1)/𝑘⌋ · 𝑘 : 𝑥 + 𝑘]. Also
note that for all 𝑥 mod 𝑘 ̸= 1, ⌊(𝑥 + 𝑘 − 1)/𝑘⌋ =
⌈(𝑥 + 1)/𝑘⌉.

Therefore,

𝐴′[𝑥] = 𝐴𝑝[𝑥 + 𝑘 − 1] + 𝐴𝑠[𝑥]

= 𝐴

[︂
𝑥 :

⌈︂
𝑥 + 1

𝑘

⌉︂
· 𝑘
]︂

+ 𝐴

[︂⌊︂
𝑥 + 𝑘 − 1

𝑘

⌋︂
· 𝑘 : 𝑥 + 𝑘

]︂
= 𝐴[𝑥 : 𝑥 + 𝑘]

which is exactly the desired sum.

Lemma B.2. (Time and Space in 1D) Given an in-
put array 𝐴 of size 𝑁 and box length 𝑘, BDBS-1D
takes Θ(𝑁) time and Θ(𝑁) space.

Proof. The total time of the prefix and suffix sums is
𝑂(𝑁), and the loop that aggregates the result into 𝐴′

has 𝑁 iterations of 𝑂(1) time each. Therefore, the total

time of BDBS-1D is Θ(𝑁). Furthermore, BDBS-1D
uses two temporary arrays of size 𝑁 each for the prefix
and suffix, for total space Θ(𝑁).
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C Excluded Sums Appendix

Prefix-Along-Dim(𝒜, i)
1 // Input: Tensor 𝒜 (𝑑 dimensions, side lengths

// (𝑛1, . . . , 𝑛𝑑), dimension 𝑖 to do the prefix sum
// along.
// Output: Modify 𝒜 to do the prefix sum along
// dimension 𝑖 + 1, fixing dimensions up to 𝑖.

2 // Iterate through coordinates by varying
// coordinates in dimensions 𝑖 + 2, . . . , 𝑑
// while fixing the first 𝑖 dimensions.
// Blanks mean they are not iterated over
// in the outer loop

3 for
4 {x = (𝑥1, . . . , 𝑥𝑑) ∈ (𝑛1, . . . , 𝑛𝑖⏟  ⏞  

𝑖

,_, :, . . . , :⏟  ⏞  
𝑑 − 𝑖 − 1

)}

5 // Prefix sum along row
// (can be replaced with a parallel prefix)

6 for ℓ← 2 to ni+1

7 𝒜[𝑛1, . . . , 𝑛𝑖⏟  ⏞  
𝑖

, ℓ, 𝑥𝑖+2, . . . , 𝑥𝑑⏟  ⏞  
𝑑 − 𝑖 − 1

] ⊕=

8 𝒜[𝑛1, . . . , 𝑛𝑖⏟  ⏞  
𝑖

, ℓ− 1, 𝑥𝑖+2, . . . , 𝑥𝑑⏟  ⏞  
𝑑 − 𝑖 − 1

]

Figure 14: Prefix sum along all rows along a dimension with
initial dimensions fixed.

The suffix sum along a dimension is almost exactly
the same, so we omit it.

Lemma C.1. (Time of Prefix Sum) Prefix-

Along-Dim(𝒜, 𝑖) takes 𝑂
(︁∏︀𝑑

𝑗=𝑖+1 𝑛𝑗

)︁
time.

Proof. The outer loop over dimensions 𝑖 + 2, . . . , 𝑑 has
max

(︁
1,
∏︀𝑑

𝑗=𝑖+2 𝑛𝑗

)︁
iterations, each with Θ(𝑛𝑖+1) work

for the inner prefix sum. Therefore, the total time is
𝑂
(︁∏︀𝑑

𝑗=𝑖+1 𝑛𝑗

)︁
.

Lemma C.2. (Adding Contribution)
Add-Contribution takes Θ(𝑁) time.

Add-Contribution(𝒜,ℬ, i , offset)
1 // Input: Input tensor 𝒜, output tensor ℬ,

// fixing dimensions up to 𝑖.
// Output: For all coords in ℬ, add the
// relevant contribution from 𝒜.

2 for {(𝑥1, . . . , 𝑥𝑑) ∈ (:, . . . , :)}
3 if 𝑥𝑖+1 + offset ≤ 𝑛𝑖+1

4 ℬ[𝑥1, . . . , 𝑥𝑑] =
5 𝒜[𝑛1, . . . , 𝑛𝑖⏟  ⏞  

𝑖

, 𝑥𝑖+1 + offset , 𝑥𝑖+2, . . . , 𝑥𝑑⏟  ⏞  
𝑑 − 𝑖

]

Figure 15: Adding in the contribution.
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1 // Input: Tensor 𝒜 of 𝑑 dimensions and side lengths
// (𝑛1, . . . , 𝑛𝑑) output tensor ℬ, side lengths of the
// excluded box k = (𝑘1, . . . , 𝑘𝑑), 𝑘𝑖 ≤ 𝑛𝑖 for all
// 𝑖 = 1, 2, . . . , 𝑑.
// Output: Tensor ℬ with size and dimensions
// matching 𝒜 containing the excluded sum.

2 𝒜′ ← 𝒜,𝒜𝑝 ← 𝒜,𝒜𝑠 ← 𝒜 // Prefix and suffix temp
3 for i ← 1 to d // Current dimension-reduction step
4 // PREFIX STEP

// At this point, 𝒜𝑝 should hold prefixes up to
// dimension 𝑖− 1.

5 𝒜′ ← 𝒜𝑝

6 // Save the input to the suffix step
7 𝒜𝑠 ← 𝒜𝑝

8 // Do prefix sum along dimension 𝑖
9 Prefix-Along-Dim(𝒜′, i − 1)

10 // Save prefix up to dimension 𝑖 in 𝒜𝑝

11 𝒜𝑝 ← 𝒜′

12 // Do included sum on dimensions [𝑖 + 1, 𝑑]
13 for j ← i + 1 to d
14 BDBS-Along-Dim(𝒜′, i − 1, j ,k)
15 // Add into result
16 Add-Contribution(𝒜′,ℬ, i ,−1)
17 // SUFFIX STEP

// Start with the prefix up until dimension
// 𝑖− 1

18 𝒜′ ← 𝒜𝑠

19 // Do suffix sum along dimension 𝑖
20 Suffix-Along-Dim(𝒜′, i − 1)
21 // Do included sum on dimensions [𝑖 + 1, 𝑑]
22 for j ← i + 1 to d
23 BDBS-Along-Dim(𝒜′, i − 1, j ,k)
24 // Add into result
25 Add-Contribution(𝒜′,ℬ, i − 1, 𝑘𝑖)

Figure 16: Pseudocode for the box-complement algorithm
with parameters filled in. For the 𝑖th dimension-reduction
step, the copy of temporaries only needs to copy the last
𝑑− 𝑖+ 1 dimensions due to the dimension reduction.
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D Additional experimental data
The data in this appendix was generated with the
experimental setup described in Section 6.

Figure 17: Time per element of algorithms for strong excluded
sums in 3D.

Figure 18: Space per element of algorithms for strong
excluded sums in 3D.

Figure 19: Space and time per element of the corners
and box-complement algorithms in 3 dimensions, with an
artificial slowdown added to each numeric addition (or ⊕)
that dominates the runtime.
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