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Abstract
This paper introduces the batch-parallel Compressed
PackedMemory Array (CPMA), a compressed, dynamic, or-
dered set data structure based on the Packed Memory Array
(PMA). Traditionally, batch-parallel sets are built on pointer-
based data structures such as trees because pointer-based
structures enable fast parallel unions via pointer manipula-
tion.When comparedwith cache-optimized trees, PMAswere
slower to update but faster to scan.

The batch-parallel CPMA overcomes this tradeoff between
updates and scans by optimizing for cache-friendliness. On
average, the CPMA achieves 3× faster batch-insert through-
put and 4× faster range-query throughput compared with
compressed PaC-trees, a state-of-the-art batch-parallel set
library based on cache-optimized trees.

We further evaluate the CPMA comparedwith compressed
PaC-trees and Aspen, a state-of-the-art system, on a real-
world application of dynamic-graph processing. The CPMA
is on average 1.2× faster on a suite of graph algorithms and
2× faster on batch inserts when compared with compressed
PaC-trees. Furthermore, the CPMA is on average 1.3× faster
on graph algorithms and 2× faster on batch inserts compared
with Aspen.

CCSConcepts: •Theory of computation→ Sharedmem-
ory algorithms;Data compression.

Keywords: packed memory array, batch-parallel, compres-
sion, data structures, dynamic graphs
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1 Introduction
The dynamic ordered set data type (also called a key store)
is one of the most fundamental collection types and appears
in many programming languages as either a built-in basic
type or in standard libraries [21, 32, 69]. Ordered sets enable
efficient scan-based operations (i.e., operations that use or-
dered iteration) such as range queries and maps. This paper
focuses on dynamic ordered sets which also support updates
(i.e., inserts and deletes).

Due to their role in large-scale data processing, dynamic
ordered sets have been targeted for efficient batch-parallel
implementations [11, 32, 35, 41, 46, 69, 73]. Since point op-
erations (e.g., single-element insertion) are often not worth
parallelizing due to their sublinear complexity, modern li-
braries parallelize batch updates that insert or delete mul-
tiple elements. Direct support for batch updates simplifies
update parallelism and reduces the overall work of updates
by sharing work between updates.

Existing set1 implementations demonstrate the importance
of optimizing for the memory subsystem to achieve high per-
formance. Almost all fast batch-parallel set implementations
are built on pointer-based data structures (e.g., trees) [11, 21,
32, 35, 41, 46, 69, 73]. Unfortunately, the main bottleneck in
the scalability of these sets is memory bandwidth limitations
due to pointer chasing [21, 46]. Dhulipala et al. [32, 35] mit-
igated these issues in trees by improving spatial locality via
blocking and compression.
Even with these improvements, cache-optimized trees in-

herently leave performance on the table because the random
memory accesses from following pointers are slower than
contiguous memory accesses [15, 59, 79]. In theory, cache-
friendly trees such as B-trees [13] are asymptotically optimal
in the classical external-memory model [4] for both updates
and scans. Empirically, array-based data structures support
scans over 2× faster than tree-based data structures due to
prefetching and the cost of pointer chasing [59, 77].

Exploiting sequential access with PMAs. This paper in-
troduces a work-efficient batch-parallel Compressed

1In this paper, we use “sets” to refer to dynamic ordered batch-parallel sets.

https://doi.org/10.1145/3627535.3638492
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Figure 1. Insert throughput as a function of batch size.
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Figure 2.Range query throughput as a function of range size.

PackedMemory Array (CPMA) based on the Packed Mem-
ory Array (PMA) [16, 17, 49], a dynamic array-based data
structure optimized for cache-friendliness (i.e., spatial local-
ity). The PMA appears in domains such as graph process-
ing [29, 31, 59, 63, 76, 78, 79], particle simulations [38], and
computer graphics [72].
Existing PMAs suffer from low update throughput com-

pared to batch-parallel trees because they lack direct algorith-
mic support for parallel batch updates [79]. At a high level,
batch-update algorithms can be implemented with unions/d-
ifferences [21]. Previous work [30] introduced a serial batch-
update algorithm for PMAsbased on localmerges but stopped
short of parallelization.
Supporting theoretically and practically efficient parallel

unions in a PMA requires novel algorithmic development
because existing parallel batch-update algorithms rely heav-
ily on pointer adjustments, which do not easily translate to
contiguous memory layouts.

As an additional optimization, this paper adds compression
to PMAs. Previous work on compressed blocked trees [32, 35]
demonstrates the potential for compression to alleviate mem-
ory bandwidth limitations by reducing the number of bytes
transferred. This paper applies the same techniques to PMAs.

Results summary. The CPMA’s cache-friendliness trans-
lates into performance: the CPMA overcomes the traditional
tradeoff between updates and queries in trees and PMAs. Fig-
ures 1 and 2 demonstrate that the CPMA achieves on average
3× faster batch-insert throughput and 4× faster range-query

Workload U-PaC [32] C-PaC [32] PMA CPMA
L1 misses 3.1E9 2.2E9 8.9E8 7.0E8
L3 misses 3.1E8 7.6E7 9.6E7 1.1E7
Table 1. Cache misses incurred during batch inserts.

throughput compared to Parallel Compressed trees (PaC-
trees) [32]. PaC-trees2 are a state-of-the-art batch-parallel set
implementation based on cache-optimized blocked trees. We
also found that the uncompressed PMA achieves on average
1.5× faster batch-insert throughput and 20× faster range-
query throughput when compared to P-trees [69] (PAM),
an efficient batch-parallel set implementation based on bi-
nary trees. We compare the PMAwith P-trees because they
are both uncompressed. Finally, CPMAs use similar space to
compressed PaC-trees but at least 2× less space than uncom-
pressed PMAs. Furthermore, PMAs use about 3× less space
than P-trees.

To understand the improved locality of the PMA compared
to PaC-trees, we measured3 the number of cache misses dur-
ing batch inserts in both. The PMA incurs at least 3× fewer
cache misses when compared to PaC-trees because the PMA
takes advantage of contiguous memory access as can be seen
in Table 8.

Furthermore, to demonstrate the applicability of theCPMA,
we built F-Graph4, a dynamic-graph-processing system built
on the CPMA because PMAs have been used extensively
in graph processing [29, 31, 59, 63, 76, 78, 79]. F-Graph is
on average 1.2× faster on a suite of graph algorithms and
2× faster on batch updates compared to C-PaC, a dynamic-
graph-processing framework based on compressed PaC-trees.
F-Graph uses marginally less space to store the graphs when
compared to C-PaC. We also evaluate Aspen [35], a state-
of-the-art dynamic-graph-processing framework based on
compressed blocked trees.We find that F-Graph is on average
1.3× faster on graph algorithms, 2× faster on batch updates,
and uses about 0.6× the space when compared to Aspen.

Contributions
• Thedesign and analysis of a theoretically efficient paral-
lel batch-update algorithm for PMAs (and for CPMAs).

• An implementation of the PMA and CPMA with the
parallel batch-update algorithm in C++.

• An evaluation of the PMA/CPMAwith PaC-trees and
P-trees.

• Anevaluation of F-Graph, a dynamic-graph-processing
system based on the CPMA, compared to C-PaC and
Aspen.

2PaC-trees are implemented in a library called CPAM, but we use “PaC-trees”
and “C-PaC” in this paper to avoid confusion with “CPMA.” Similarly P-trees
are implemented in a library called PAM.
3We added 100million elements serially in batches of 1million andmeasured
the cache misses with perf stat.
4F-Graph uses only one compressed PMA (a flat array) to store the graph.
The F in F-Graph comes from the musical key of F, which has one flat.
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Work Span

Operation CPMA (this work) Compressed PaC-tree [32] CPMA (this work) Compressed PaC-tree [32]
Insert/delete 𝑂 ((log2 (𝑛))/𝐵+log(𝑛))† 𝑂 (log(𝑛)+𝑃) 𝑂 (log(𝑛)) 𝑂 (log(𝑛)+𝑃/𝐵)
Batch insert/delete 𝑂 (𝑘 ((log2 (𝑛))/𝐵+log(𝑛)))† 𝑂 (𝑘log(𝑛/𝑃𝑘))† 𝑂 (log(𝑘)+log2 (𝑛)) 𝑂 (log(𝑛/𝑃)log𝑘+𝑃/𝐵)
Search 𝑂 (log(𝑛)) 𝑂 (log(𝑛)+𝑃) 𝑂 (log(𝑛)) 𝑂 (log(𝑛)+𝑃/𝐵)
Range query 𝑂 (log(𝑛)+𝑟/𝐵) 𝑂 (log(𝑛)+(𝑃+𝑟 )/𝐵) 𝑂 (log(𝑛)) 𝑂 (log(𝑛)+𝑃/𝐵)
Table 2.Asymptotic bounds for operations in a CPMA and compressed PaC-tree. We use 𝐵 to denote the cache-line size, 𝑘 to
denote the size of the batch, 𝑟 to denote the number of elements returned by the range query, and 𝑃 to denote the user-specified
tree node block size in the PaC-tree (called 𝐵 in [32]). Bounds with † are amortized. All bounds are Ω(1).

2 Related work
This section describes how this work relates to prior work in
parallel data structures. Specifically, it discusses concurrent
versus batch-parallel data structures and their use cases.

There is extensivework on concurrent data structures such
as trees [6, 9, 22, 23, 40, 51, 55, 57], skip lists [48, 60], and
PMAs [79]. Concurrent data structures aremostly orthogonal
to this paper, which focuses on batch-parallel data structures.
Existing concurrent trees typically supportmostly point oper-
ations (i.e., linearizable inserts/deletes and finds), whereas the
CPMAin thispaper also supports rangequeries andmaps (and
associated operations such as filter and reduce). Some recent
work studies range queries in concurrent trees [12, 43]. On the
other hand, concurrent trees support asynchronous updates,
which are more general than batch updates because batch up-
dates require a single writer. Therefore, fairly comparing con-
current and batch-parallel data structures on update through-
put is challenging as their update functionalities are different.
The PAM paper [69] demonstrated that batch-parallel bi-

nary trees can achieve orders of magnitude higher inser-
tion throughput compared to concurrent cache-optimized
trees [55, 75, 86].

Batch-parallel and concurrent data structures are suited for
different use cases. For example, batch-parallel data structures
have recentlybecomepopular forbothpractical [35, 39, 52, 54]
and theoretical [1, 36, 37, 45, 58, 73] dynamic-graph algo-
rithms and containers. They are well-suited for applications
with a large number of requests in a short time, such as stream
processingor loop join [50]. In contrast, concurrent data struc-
tureshavebeenusedextensively inkey-value stores foronline
transaction processing applications that emphasize point op-
erations such as put and get [27].

3 PackedMemory Array
This section reviews thePackedMemoryArray [16, 49] (PMA)
data structure to understand the improvements in later sec-
tions. First, it introduces the theoretical models used to an-
alyze the PMA. It then describes the PMA’s structure and
supported operations. Finally, it details how to perform point
updates in a PMA, which forms the basis for the batch-update
algorithm in Section 4.

Analysismethod. Table 1 summarizes the bounds for key
parallel operations in the CPMA and compressed PaC-tree
in thework-spanmodel [28, Chapter 27] and the external-
memorymodel [4]. Thework is the total time to execute the
entire algorithm in serial. The span is the longest serial chain
of dependencies in the computation. In the work-span model
with binary forking, a parallel for loop with 𝑘 iterations with
𝑂 (1) work per iteration has𝑂 (𝑘) work and𝑂 (log(𝑘)) span.

The external-memory model introduces the cache-line-
size parameter 𝐵 and measures algorithm cost in terms of
cache-line transfers.

Design and operations. The PMA maintains elements in
sorted order in an array with (a constant factor of) empty
spaces between its elements. Specifically, a PMAwith 𝑛 ele-
ments uses𝑁 =Θ(𝑛) cells. The empty cells enable fast updates
by reducing the amount of datamovement necessary tomain-
tain the elements in order. The primary feature of a PMA is
that it stores data in contiguous memory, which enables fast
cache-efficient iteration through the elements.

A PMA exposes four operations:

• insert(x): inserts element x into the PMA.
• delete(x): deletes element x from the PMA, if it exists.
• search(x): returns a pointer to the smallest element
that is at least x in the PMA.

• range_map(start, end, f): applies the function f to
all elements in the range [start, end).

In this paper, we use the terms “range map” and “range
query” interchangeably. Range queries can be implemented
with themoregeneral rangemap, butweuse themorepopular
term “range query.”
The PMA supports point queries (search) in 𝑂 (log(𝑛))

cache-line transfers and updates in𝑂 ((log2 (𝑛))/𝐵+log(𝑛))
(amortized and worst-case) cache-line transfers [16–18, 80–
82]. The PMA supports efficient iteration of the elements in
sorted order, enabling fast scans and range queries. Specifi-
cally, the PMA supports the range_map operation on 𝑘 ele-
ments in𝑂 (log(𝑛)+𝑘/𝐵) transfers. It implements range_map
with a search for the first element in the range, then a scan un-
til the end of the range. PMAs are asymptotically worse than
PaC-trees for all inserts/deletes and match them for search
and range queries (Table 1).
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Figure 3. Example of an insertion in a PMAwith leaf density
bound of 0.9 and leaf size of 4.

The PMA defines an implicit binary tree with leaves of size
Θ(log(𝑁 )) cells. That is, the implicit tree hasΘ(𝑁 /log(𝑁 ))
leaves and heightΘ(log(𝑁 /log(𝑁 ))). Every node in the PMA
tree has a corresponding region of cells. Each leaf
𝑖 ∈ {0,...,𝑁 /log(𝑁 )−1}has theregion [𝑖log(𝑁 ),(𝑖+1)log(𝑁 )),
and each internal node’s region encompasses all of the regions
of its descendants. The density of a region in the PMA is the
fraction of occupied cells in that region.
Each node of the PMA tree has an upper density bound

that determines the allowed number of occupied cells in that
node. If an insert causes a node’s density to exceed its upper
density bound, the PMA enforces the density bound by re-
distributing elements with that node’s sibling, equalizing the
densities between them. The density bound of a node depends
on its height.

Updating a PMA. A PMA maintains spaces between ele-
ments for efficient updates. Since deletions are symmetric to
insertions, we omit the discussion of deletes.

As shown inFigure3, the fourmainsteps inaPMAinsertion
are as follows:

1. Search for the location that the element should be in-
serted into to maintain global sorted order.

2. Place the element at that location, potentially shifting
some elements to make room.

3. If the leaf that was inserted into violates its density
bound, count the density of nodes in the PMA to find
a sibling to redistribute into.

4. If necessary, redistribute elements to maintain the
correct distribution of empty spaces in the PMA.

The four steps of a PMA insertion use the implicit tree to de-
termine which leaf to modify and which node to redistribute,
if any. Steps (1) and (2) take𝑂 (log(𝑛)) cache-line transfers.
Counting and redistributing elements (steps (3) and (4)) take
𝑂 ((log2 (𝑛))/𝐵) (amortized and worst-case) cache-line trans-
fers [16–18, 80–82].

Resizing a PMA. If the root-to-leaf traversal after an insert
reaches the root and finds that its density bound has been
violated, the entire PMA is copied to a larger array and the
elements are distributed equally amongst the leaves of the
new PMA.

4 Parallel Batch Updates in a PMA
Batching updates in a PMA improves throughput by sharing
work between updates and simplifying parallelization. This
section describes how to apply batch inserts in a PMA (batch
deletes are symmetric).

We present a work-efficient parallel batch-insert algorithm
for PMAs. Awork-efficient parallel algorithm performs no
more than a constant factor of extra operations than the serial
algorithm for the same problem. Serially inserting𝑘 elements
into a PMAwith𝑛 elements takes𝑂 (𝑘 (log(𝑛)+(log2 (𝑛))/𝐵))
cache-line transfers.Unfortunately, anaivealgorithmthatpar-
allelizes over the inserts is not work-efficient because it may
recount densities to determine which regions to redistribute.
Supporting work-efficient batch inserts requires careful algo-
rithm design to avoid redundant work. Finally, we conclude
the section with a microbenchmark that demonstrates the
serial and parallel scalability of batch inserts in PMAs.

The batch-insert problem for PMAs takes as input a PMA
with 𝑛 elements and a batch with 𝑘 sorted elements to insert.
An unsorted batch can be converted into a sorted batch in
𝑂 (𝑘log(𝑘)) work.

The optimal strategy for applying a batch of updates de-
pends on the size of the batch. At one extreme, if 𝑘 is small
(e.g.,𝑘 <100), the overheads from the batch-update algorithm
outweigh the benefits, so point updates are more efficient
than batch updates. At the other extreme, if 𝑘 is large (e.g.,
𝑘 ≥𝑛/10), the optimal algorithm is to rebuild the entire data
structure with a linear two-finger merge . The batch-insert
algorithm for PMAs performs local merges to address the
intermediate case between these two extremes.
The parallel batch-insert algorithm for PMAs applies a

batch of updates efficiently in the case where neither point in-
sertions nor a completemerge are the best options. Therefore,
we focus on the case5 where𝜔 (1)=𝑘 =𝑜 (𝑛).

The batch-insert algorithm consists of three phases: (1)
a batch-merge phase, (2) a counting phase, and (3) a redis-
tribute phase. The phases proceed in serial, but each phase is
parallelized internally. The phases adapt the steps of a PMA
insertiondescribed in Section 3 to the batch setting. Thebatch-
merge phase combines the search and place steps, and the
counting and redistribute phases generalize their counter-
parts from point inserts.
At a high level, the parallel batch-merge phase divides

the PMA and the batch recursively into independent sections
and operates independently on those sections. Each recur-
sive step first merges elements from the batch into one leaf
of the PMA, and then recurses down on the remaining left
and right portions of the batch. This recursive merge phase is
inspired by recursive join-based algorithms in batch-parallel

5The assumption 𝑘 =𝑜 (𝑛) is only used in the proofs to ensure sorting does
not dominate the total cost.
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Figure 4. Example of batch insertion in a PMA with leaf
density bound of 0.9 and leaf size of 4. After the merge, there
are more elements in the second leaf than the leaf size, so the
number of elements is stored in the leaf, and the elements
are stored out-of-place until the redistribute.
trees [2, 3, 21, 32, 35, 69]. Existing join algorithms for tree lay-
outs rely on pointer adjustmentswhich do not easily translate
into array layouts.
At each step of the recursion, we perform a PMA search

for the midpoint (median) of the current batch and merge the
relevant elements from the batchdestined for that leaf into the
target leaf. Finding the bounds in the batch of all elements in
that leaf takes twosearches (onebackwardsandone forwards).
Once the endpoints have been found, we fork the merge of all
relevant elements from the current batch into the target leaf.
If the number of elements destined for a leaf is sufficiently
large, we use a parallel merge algorithmwith load-balancing
guarantees to achieve parallelism [5]. Finally, we recurse on
the remaining left and right sides of the batch in parallel.

Lemma 1. Given a batch of 𝑘 sorted elements, the work of the
batch-merge phase is𝑂 (𝑘log(𝑛)), and the span is
𝑂 (log(𝑘)log(𝑛)).

Proof. The height of the recursion is 𝑂 (log(𝑘)), and each
search in the PMA takes𝑂 (log(𝑛))work. Finding the first and
last element in the batch destined for the leaf takes𝑂 (log(𝑘))
work with exponential searches, which is smaller than
𝑂 (log(𝑛)). Therefore, theworkandspanoffinding thebounds
for the recursion is𝑂 (log(𝑘)log(𝑛)).
In the worst case for the work, each element in the batch

could be destined for a different leaf, so the total work of
merging 𝑘 elements into 𝑘 leaves is 𝑂 (𝑘 log(𝑛)), which is
asymptotically larger than the work to perform the recursion.

Theworst-case span for anyoneof themerges is𝑂 (log(𝑘)),
so the total worst-case span of all the merges is𝑂 (log2 (𝑘)),
which is less than𝑂 (log(𝑘)log(𝑛)). □

Whenmerging elements from the batch into a leaf, the tar-
get leaf may overflow because it does not have enough space
to hold all the elements destined for it. To resolve this issue,
the batch merge copies all elements into separate memory
and keeps the size of the extra memory as well as a pointer
to it in the leaf. This extra data is then cleaned up after the
merge during the redistribution phase. Figure 4 illustrates a
batch merge, leaf overflow, and subsequent redistribution.

During the recursive batchmerge,we keep track of allmod-
ified PMA leaves in a thread-safe set for use in the counting
and redistribution phases.

Counting phase.After merging all elements into the PMA,
the batch insert algorithm performs a counting phasewhere
it finds the PMA nodes that violate their density bounds for
later redistribution. The𝑂 (log2 (𝑛)/𝐵) work bound for point
insertions in the PMA comes from amortized analysis of the
counting and redistribution phase [49], so efficiently count-
ing and redistributing in the batch-parallel setting is critical
to achieving work-efficiency. To understand how to avoid
redundant work, we start with a presentation of an efficient
serial algorithm and describe how simply parallelizing this
algorithm can lead to extra work. We then present our work-
efficient parallel algorithm.
An efficient serial batch algorithm must count each re-

quired cell exactly once. The algorithm starts with the set
of leaves that were touched in the batch-merge phase. The
ancestors of these leaves in the implicit PMA tree may need
to be redistributed. The serial algorithm checks every leaf in
turn. If a leaf violates its density bound, the algorithm then
walks up the implicit PMA tree from that leaf until it finds a
node that respects its density bound. Finding the density of
a node involves counting all of its descendants. By caching
every result and checking the cached results before counting,
the serial algorithm counts every required cell exactly once.
Unfortunately, simply parallelizing this serial algorithm

over the leaves is not work-efficient because the algorithm
may recount PMA nodes whose densities have not been
cached yet. Therefore, the parallel algorithm may recount
the same region more than a constant number of times if
many leaves share the same ancestor to be redistributed.
To resolve this issue, we devise a newwork-efficient par-

allel counting algorithm that counts each required PMA
cell exactly once. Figure 5 presents a worked example of this
counting algorithm. The counting algorithm takes as input
the leaves that were modified in the batch merge and outputs
the set of PMA nodes that need to be redistributed.

This parallel algorithm avoids redundant work by process-
ing the levels serially from the leaves to the root and saving
any counts for later lookups by nodes in higher levels. At
each level, we maintain a thread-safe set of nodes that need
to be counted. This set is initialized with the leaves that were
affected by the batch merge. The levels are processed serially,
but all nodes at each level are processed in parallel. If any
node at some level 𝑖 exceeds its density bound, the algorithm
adds its parent to the set of nodes to be counted at level 𝑖+1.
The algorithm terminates when there are no more nodes to
be counted, or it has reached the PMA root.

Lemma 2. The parallel counting algorithm is work-efficient.

Proof. The parallel counting algorithm caches results from
each counted region as it processes the levels of the PMA tree.
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Figure 5. An example of the work-efficient counting algorithm for batch updates. The blocks at the top represent the PMA
leaves and the dots represent elements in the PMA. The pink blocks with arrows represent leaves that were touched during
a batch update. The tree below the PMA is the implicit PMA tree of nodes labeled with a tuple of (height, index) (indices are
assigned left to right). The blue solid circles represent PMA nodes that must be counted because their sibling or child violated
its density. The tan dotted circles represent PMA nodes that did not need to be counted.

Due to the serial iteration of levels, all nodes to be counted
at a level are counted in parallel. When a node 𝑥 needs to be
counted, no other node𝑦 at that level will need to count any
of 𝑥 ’s descendants since the set ensures that 𝑥 ≠𝑦. All descen-
dants of𝑥 haveeither alreadybeencountedandcached, orwill
be counted exactly once and cached to avoid recounting. □

Lemma 3. The span of the parallel counting algorithm is
𝑂 (log2 (𝑛)).

Proof. The counting algorithm serially iterates over at most
𝑂 (log(𝑛)) levels of the PMA because the height of the PMA
tree is bounded by𝑂 (log(𝑛)). In the worst case, for each level
𝑖 , the algorithmmay have to recurse down 𝑖 levels to count,
so the worst-case span of traversing the PMA tree levels is:∑log(𝑛)

𝑖=0 𝑖 =𝑂 (log2 (𝑛)). The PMA leaves are 𝑂 (log(𝑛)) cells
each, so the total span of counting is𝑂 (log2 (𝑛)). □

Redistribution phase.Once the counting phase has identi-
fied the correct regions to redistribute, the PMA redistributes
regions by performing two copies of the relevant data. The
first copy packs the regions to redistribute from the PMA into
a buffer, and the second copy equalizes the densities in the
regions to redistribute by spreading the elements evenly from
the buffer into the target leaves.

Lemma 4. Given a batch of 𝑘 sorted elements, the work of the
redistribute phase is𝑂 ((𝑘 log2 (𝑛))/𝐵)) amortized cache-line
transfers, and the worst-case span is𝑂 (log2 (𝑛)).

Proof. The work of the redistribute phase is bounded above
by the work of the counting phase, because the number of
elements that need to be redistributed is atmost thenumber of
elements thatneed tobecounted. FromLemma2, the counting
step is work-efficient, so it takes nomore than the serial amor-
tized work bound of𝑂 ((𝑘log2 (𝑛))/𝐵)) cache-line transfers.
The span of the redistribute phase is bounded above by

𝑂 (log2 (𝑛)) because there are at most 𝑛 independent sections
to redistribute of size𝑛 each. Redistributing each one involves
a parallel copy in and out, which has span𝑂 (log(𝑛)). □

Batch
size

Serial
TP

Speedup over
serial point

Parallel
TP

Speedup over
serial batch

Overall
speedup

1—10 2.2E6 1.0 1.8E6 0.8 0.8
1E2 1.9E6 0.9 3.0E6 1.6 1.4
1E3 2.0E6 1.0 9.0E6 4.6 4.1
1E4 2.0E6 1.0 2.5E7 12.5 11.6
1E5 2.3E6 1.1 4.1E7 17.8 18.6
1E6 2.9E6 1.3 7.0E7 23.8 32.0
1E7 5.5E6 1.9 1.0E8 18.6 47.1
Table 3. Throughput (TP) of serial and parallel batch
insertions in the PMA. We use point insertions for small
batches when the batch update algorithm does not provide
practical benefits. Overall speedup is the speedup over serial
point inserts.

Putting it all together. Analyzing the entire batch-insert
algorithm just involves summing the work and span of the
merge, counting, and redistribute phases of the batch-insert
algorithm.

Theorem 5. The batch-insert algorithm for PMAs inserts a
batch of 𝑘 sorted elements in𝑂 (𝑘 (log(𝑛)+log2 (𝑛)/𝐵)) amor-
tized work and𝑂 (log2 (𝑛)) worst-case span.

Batch insertmicrobenchmark.Table2 reports the through-
put of batch inserts as a function of batch size (using the setup
described inSection6).ThePMAunder test startswith100mil-
lion elements and we add an additional 100 million elements.
On one core, the batch-insert algorithm is up to 3× faster

than point inserts when the batch is large. Batch inserts in
a PMA save computation over point insertions by reducing
the number of searches, the length of each search, and the
number of redistributions. The batch algorithmperformsonly
one binary search per updated leaf because the remaining
elements in the batch destined for that leaf are merged in
directly. Additionally, the searches are smaller because they
often search only a subsection of the PMA. Finally, the count-
ing algorithm combines ancestor ranges to redistribute in the
PMA, potentially skipping levels of redistribution.
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(a) PMA: Insert(11010101)

(b) CPMA: Insert(11010101)

00000100 00010000 - - 00010011 11010100 11010111 -

00000100 00010000 00010011 - 11010100 11010101 11010111 -

---00000100 0011 1000 0110 01111010100 0 -

---00000100 0011 1000 0110 00111010100 0 0100

Figure 6. An example of inserting the same element in a
PMA and CPMAwith the same elements. The density bound
in all leaves is 0.9. Here, sizeof(T) is 8 bits, and a byte is 4
bits. The blue bits in the CPMA represent continue bits. The
green shaded cells in both the PMA and CPMA contain new
data after the insert. The PMA redistributes its elements after
the insertion, but the CPMA does not because the insertion
did not violate the leaf density bound.

Furthermore, Table 2 shows that batch inserts in a PMA
achieve parallel speedup of up to about 19× on 64 cores (128
threads) as the batch size grows. The main bottleneck in the
parallel scalabilityofbatchupdates ismemorybandwidth.Sec-
tion 5 mitigates these issues by adding compression to the
batch-parallel PMA to reduce data movement.

5 Compressed PackedMemory Array
This section introduces, analyzes, and empirically evaluates
the Compressed PackedMemory Array (CPMA). Adding
compression does not affect the PMA’s asymptotic bounds.
Empirically, the CPMA achieves better parallel scalability
than the PMA because the parallel operations are memory-
bound, so the CPMA’s smaller size makes better use of mem-
ory bandwidth.

Data compression techniques.The CPMA exploits the fact
that elements are stored in sorted order in a PMA to apply
delta encoding [68] to the elements.Delta encoding stores
differences (deltas) between sequential elements rather than
the full element. Given a sorted array𝐴 of 𝑛 elements, delta
encoding results in a new array𝐴′ such that𝐴′

0=𝐴0 and for
all 𝑖 =1,2,...,𝑛−1,𝐴′

𝑖 =𝐴𝑖−𝐴𝑖−1.
These deltas can then be stored in byte codes, which store

an integer as a series of bytes [19, 84]. Each byte uses one bit
as a continue bit, which indicates if the following byte starts
a new element or is a continuation of the previous element.
We use delta encoding with byte codes in the CPMA be-

cause they are fast to decode and achievemost of thememory
savings of shorter codes [19, 35, 66].

CPMA structure. The CPMAmaintains the same implicit
binary tree structure as a PMA and compresses the leaves.
Just like in the PMA, a CPMAwith 𝑛 elements and 𝑁 =Θ(𝑛)
cells maintains leaves of size Θ(log(𝑛)) in order to achieve
its asymptotic time bounds. The CPMA applies the packed-
left optimization, which packs elements to the left in PMA

leaves, for ease of compression [79]. Packing the elements
to the left does not affect the PMA’s (or CPMA’s) asymptotic
bounds6 because the bounds only depend on the density of
the elements in the PMA leaves [79].
A CPMA leaf stores its head, or its first element, uncom-

pressed, and stores subsequent elements compressed with
delta encoding and byte codes. That is, in a CPMAwith ele-
ments of type T, the first sizeof(T) bytes in each leaf contain
the uncompressed head. All following cells take 1 byte each
rather than sizeof(T) bytes.
The density bounds in a CPMA count byte density rather

than element density. The density in a CPMA node is the
ratio of the number of filled bytes to the total number of bytes
available in the node.

CPMAOperations
The CPMA maintains the same asymptotic bounds as the
PMA for point queries (searches) and point updates. Further-
more, compression does not affect concurrency schemes for
PMAs [79] or the batch-update algorithm from Section 4.

The PMA’s asymptotic bounds are derived from its implicit
tree structure and related density bounds. The main change
in theCPMA is the compression of each individual leaf, which
does not affect the high-level implicit tree structure.
The uncompressed head allows for efficient searching to

find which leaf contains an element. The compressed leaves
in the CPMA do not affect the high-level tree structure or
searches because each leaf can still be processed indepen-
dently in𝑂 (log(𝑛)) work.

Pointqueries.ACPMAon𝑛 elements supports point queries
in 𝑂 (log(𝑛)) cache-line transfers. There are two steps in a
point query in aCPMA:abinary searchon leaf heads, and then
a pass through the leaf at the end of the binary search to find
the closest element. There are𝑂 (𝑛/log(𝑛)) leaves, so a binary
search takes𝑂 (log(𝑛)) cache-line transfers. The leaf heads
are stored uncompressed, so there is no additional cost to
perform the binary search on leaf heads compared to a search
in a PMA. After finding the target leaf, the CPMA performs
a search within that leaf. The size of each leaf is bounded
by𝑂 (log(𝑛)), so it takes𝑂 (log(𝑛)/𝐵) cache-line transfers to
search a compressed leaf.

Point updates.A CPMA on 𝑛 elements supports point up-
dates in𝑂 (log(𝑛)+(log2 (𝑛))/𝐵) cache-line transfers.Wewill
focus on the case of inserts, since deletes are symmetric to
inserts. Figure 6 presents aworked example of the same insert
in a PMA and a CPMA.
The CPMA follows the same four steps of a PMA point

update described in Section 3. We will focus on steps (2)-(4)

6A traditional PMA redistributes all elements in a leaf after each insertion.
Therefore, the packed-left property does not incur extra element moves over
a regular PMA because both rearrange all elements in the leaf on each insert.
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Figure 7. Scalability of batch inserts in the PMA/CPMA.We
use 64 to denote all physical cores and 64h to denote all 128
hyperthreads.

(place, count, and redistribute), since we already analyzed
point queries.
After performing a point query to find the target leaf, the

CPMA places an element by adding a delta to the leaf and up-
dating the following delta. Updating the leaf can be done in a
single pass, which modifies up to𝑂 (log(𝑛)) cells because the
size of the leaf is bounded by𝑂 (log(𝑛)). The CPMAmatches
the PMA’s asymptotic bound on the number of cells modified
during the place step.

Once the target leaf has been updated, the CPMA traverses
up the leaf-to-root path and redistributes any nodes that vi-
olate their density bounds just as in a PMA. The amortized
insert time bound comes from the checking and maintenance
of density bounds, which the CPMA supports in the same
asymptotic cache-line transfers as a PMA. Just as in a PMA,
counting and redistributing in a CPMA takes cache-line trans-
fers linear in the size of the region.

Parallelizing the CPMA. The compression in the CPMA
does not conflictwith existing lock-basedmultiple-writer par-
allelismforPMAs[79]because the lockingschemedependson
the implicit PMA tree structure and locking at a leaf granular-
ity. Furthermore, compression does not affect the theoretical
performance of concurrent PMAs because the CPMA also
supports single-pass operations within leaves. The CPMA
supports multiple readers because reads are non-modifying.

Finally, the batch-update algorithm in the CPMA is identi-
cal to the batch-update algorithm for PMAs described in Sec-
tion 4. The design and analysis of the batch-update algorithm
also depends only on single-pass operations on leaves.

Scalability analysis
Wemeasure the scalability of both the PMA and CPMA on
batch inserts and range queries using the setup described
in Section 6. In each experiment, the PMA and CPMA start
with 100 million elements. In each batch-insert experiment,
we add 100 batches of 1 million elements each. In each range-
query experiment, we perform 100,000 range queries in par-
allel where each query is expected to return about 1.5million
elements.Wemeasure the effect of core count onperformance

1 2 4 8 16 32 64 64h
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32
64
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ee
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Figure 8. Scalability of range queries in the PMA/CPMA.We
use 64 to denote all physical cores and 64h to denote all 128
hyperthreads.

of the PMA/CPMA. The extended version of the paper con-
tains the raw data.

Figure 7 shows that the CPMA achieves better scalability
than the PMA on batch inserts because compression maxi-
mizes theCPMA’s usage of availablememory bandwidth. The
PMA achieves up to 19× speedup and the CPMA achieves up
to 43× speedup for batch inserts on 64 cores (128 threads).
The CPMAachieves better batch insert throughput compared
to the PMA when the number of cores is sufficiently large
(at least 16). When the number of cores is too small, the addi-
tional computational overhead from compression outweighs
the benefits of decreased memory traffic.
Similarly, Figure 8 demonstrates that the PMA achieves

about 41× speedup for range queries and the CPMA achieves
about118× speedupfor rangequerieson64cores (128 threads).
The PMA’s/CPMA’s scalability on range queries is much bet-
ter than its scalability on updates because the queries proceed
in parallel and do not need to coordinate. The PMA’s range
query throughput in terms of bytes transferred per second
reaches thememorybandwidthon themachine, but its overall
range query throughput is limited because of the large size
per element. The CPMA alleviates the memory bandwidth
issue bydecreasing the size per element, enabling it to support
more elements processed per byte transferred.

6 Evaluation
Tomeasure the improvements described in Sections 4 and 5,
this section evaluates the PMA/CPMA compared to uncom-
pressed/compressed PaC-trees [32] and P-trees [69] on range
queries, batch inserts, and space usage. We use the terms
“U-PaC” and “C-PaC” to denote the uncompressed and com-
pressed versions of PaC-trees, respectively, in this section.
This section then evaluates the CPMA, C-PaC, and As-

pen [35], a state-of-the-art dynamic-graph processing system
based on compressed trees, on an application benchmark of
dynamic-graph processing because both PMAs and trees ap-
pear frequently as dynamic-graph containers [29, 31, 32, 35,
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59, 63, 76, 78, 79]. We introduce F-Graph, a system for pro-
cessing dynamic graphs that uses the CPMA as its underlying
data structure.

Additional experiments and data tables can be found in an
extended version of this paper [? ].

Microbenchmarks summary.At a high level, the CPMA
achieves the best of both worlds in terms of performance. On
average, it achieves 4× faster range-query throughput and
3× faster batch-insert throughput when compared to com-
pressed PaC-trees. According to the theoretical prediction
in Table 1, PaC-trees asymptoticallymatch or beat CPMAs for
all operations. However, in practice, the CPMA supports both
fast queries and updates due to its locality. Finally, CPMAs
use about the same space as compressed PaC-trees, but they
use less than half the space of uncompressed PMAs. When
comparedwith PAM, an uncompressed data structure, the un-
compressed PMA achieves 1.5× faster throughput for batch
insertions and 20× faster range query throughput.

Graph benchmark summary. For graph workloads, we
found that F-Graph is on average 1.2× faster on a suite of
graph algorithms, achieves 2× faster throughput for batch
updates, and uses marginally less space to store the graphs
compared to C-PaC. Furthermore, F-Graph is on average 1.3×
faster on graph algorithms, achieves 2× faster throughput
for batch updates, and uses 0.6× space to store the graphs
compared to Aspen.

Systems setup. We implemented the PMA and CPMA as
a C++ library on top of the search-optimized PMA [77] and
compiled them with clang++-14. To match the paralleliza-
tion method from the PaC-trees library, we parallelized the
PMA/CPMA with the Parlaylib toolkit [20]. The PMA and
CPMA are currently implemented as key stores (sets). The
code can be found on https://github.com/wheatman/Packed-
Memory-Array.git.

Each external library is compiled using the default config-
uration of g++-11 and Parlaylib (or PBBSlib, a precursor to
Parlaylib, for Aspen) for parallelization. They are each im-
plemented in a C++ library. We used the in-place set mode
of P-trees and PaC-trees for a fair comparison (although the
libraries also support a less efficient functional mode). The
PaC-trees library block size is set to the default for sets at 256,
which corresponds to a maximum node size of 4108 bytes. To
initialize PaC-trees, we used the library-provided recursive
build routine, which lays out the tree nodes non-contiguously
in memory.

We also tested the Rewired PMA (RMA) [30] and compiled
it with the default provided scripts which used clang++-14.
Since the RMA is serial, there is no parallelization framework.

All experimentswererunona64-core2-wayhyper-threaded
Intel® Xeon® Platinum 8375C CPU@ 2.90GHz with 256 GB
of memory fromAWS [7]. Across all the cores, the machine
has 3 MiB of L1 cache, 80 MiB of L2 cache, and 108 MiB of

L3 cache. All performance results are the average of 10 trials
after a single warm up trial.

Evaluation onmicrobenchmarks
We first evaluate the RMA, P-trees, and PaC-trees compared
to the PMA/CPMA on a suite of microbenchmarks.

Experimental setup.We evaluate batch-update through-
put first with 40-bit uniform random numbers. 40-bit num-
bers gives a balance between the compression ratio and the
number of duplicates. Uniform random is the worst case for
compressed data structures because it maximizes the deltas
between elements and therefore minimizes the compression
ratio. Uniform random is also the worst case for batch inserts
because it minimizes the amount of shared work between
updates that the algorithm can eliminate. However, uniform
random is the best case for redistributes in PMAs/CPMAs.

We also evaluate batch-update throughput by startingwith
40-bit uniform randomnumbers and then adding elements ac-
cording to a zipfian distribution. The zipfian distribution gen-
erates 34-bit numbers with skew parameter 𝛼 =0.99 (parame-
ter taken from the YCSB [27]). For additional batch-insert ex-
periments on skewed distributions,we test the data structures
on a skewed RMAT distribution [26] in the graph-processing
application benchmark at the end of this section.
We measure range-query performance of the data struc-

ture when it contains 100 million elements by performing
100,000 range queries in parallel. We varied the size of the
range queries across experiments. Wemeasure batch-insert
performance, by inserting 100 million elements in batches
into a data structure that starts with 100million elements.We
varied the batch size across experiments. If the batch-insert
performance was slower than the non-batched insert done
in a loop, the non-batched insert number was reported.
To measure the space usage, we vary the number of ele-

ments and report the size.
Finally, we evaluate the serial batch-update algorithm from

the Rewired PMA (RMA) [30] with the provided test code and
build scripts. For a fair comparison, we ran the batch update
algorithm for PMAs from Section 4 on one core.
The RMA’s provided tests use the numbers [1,2,...,𝑛] sam-

pled without replacement where 𝑛 is the total number of
elements after the test. Although this is not exactly the same
set as numbers as in our PMA experiments (with uniform ran-
dom 40-bit numbers), the experiments are equivalent because
both data structures are uncompressed, so only the ordering
of the numbers matters.

Batch inserts onuniformrandominputs. Figure 1 demon-
strates that the throughput of parallel batch inserts in the
CPMA is on average 3× faster than in compressed PaC-trees.
Similarly, parallel batch inserts in thePMAachieveonaverage
1.5× faster throughput than in P-trees. The PMA’s/CPMA’s
cache-friendliness enables it to support faster updates than

https://github.com/wheatman/Packed-Memory-Array.git
https://github.com/wheatman/Packed-Memory-Array.git
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Batch size RMA [30] PMA PMA/RMA
1—1E4 1.7E6 2.2E6 1.3
1E5 2.0E6 2.4E6 1.2
1E6 2.5E6 3.2E6 1.3
1E7 5.4E6 6.5E6 1.2

Table 4. Serial batch insert throughput (inserts per second)
of the uncompressed PMA and RMA.We use point insertions
for small batches when the batch update algorithm does not
provide practical benefits.

the theory suggests. Asmentioned in Section 3, PMAs (and by
extension, CPMAs) support point updates in𝑂 ((log2 (𝑛))/𝐵+
log(𝑛))work.Trees theoreticallydominatePMAsforpointup-
dates: balanced binary trees support updates in𝑂 (1+log(𝑛))
work [28], and cache-friendly trees such as B-trees [13] sup-
port updates in 𝑂 (1+ log𝐵 (𝑛)) work. However, in practice,
batch updates in a PMA/CPMA are faster than batch updates
in trees because the PMA/CPMA takes advantage of contigu-
ous memory access.

Table 3 evaluates the batch-insert algorithm for uncom-
pressed PMAs from Section 4 on one core compared to the
existing serial batch-insert algorithm for RMAs, an optimized
version of PMAs [30]. On average, the batch-insert algorithm
in this paper is about 1.2× faster than the existing batch-insert
algorithm for RMAs.

Batch inserts on skewed inputs. Just as in the uniform
random case, the CPMA outperforms C-PaC on small batches
and is slightly slower on large batches of skewed inserts.
The batch-parallel PMA is well-suited for the case of all

insertions targeting the same leaf. In contrast, for non batched
PMAs, this is the worst case. The batch-insert PMAmitigates
the worst case by (1) sharing the work of searches between
inserts, reducing overall work, and (2) skipping levels of re-
distribution with larger batches, improving overall work and
parallelism. Due to these factors, the PMA/CPMA achieves
higher throughput on zipfian batch inserts compared to uni-
form random batch inserts as can be seen in Table ??.

Batch deletes.On average, the PMA performs uniform ran-
dom batch deletions 1.9× faster than uniform random batch
insertions. Similarly, theCPMAachieves 1.5×higher through-
put for uniform random batch deletions compared to uniform
randombatch insertions, on average as can be seen inTable ??.
We see a similar trend for the zipfian distribution. Batch dele-
tions are faster than batch insertions when the batch is large
because deletes do not have to allocate temporary space as
they will never overflow the PMA leaves.

Range queries. Figure 2 shows that the CPMA supports
range queries between 1.2×−10× faster than compressed
PaC-trees. Similarly, thePMAsupports rangequeriesbetween
8.9×−27.4× faster than P-trees. The PMA/CPMA is faster to
scan than compressed PaC-trees because the PMA’s/CPMA’s

contiguous layout enables prefetching, while trees require
pointer-chasing between tree nodes. Furthermore, for small
ranges, the PMA/CPMA are at least 4× faster due to the pre-
existing search layout optimizations for PMAs, which are
orthogonal to the optimizations in this paper [77].

Furthermore, the CPMA supports range queries 1.3× faster
thanthePMAonthe largest rangebecause theCPMA’ssmaller
size enables it to fetchmore elements before reachingmemory
bandwidth.However, thePMAis faster for small rangequeries
becauseof the addedoverheadof decompression in theCPMA.

Space usage. Table 4 shows that CPMAs are similar in size
to C-PaC and are over 2× smaller than uncompressed PMAs.
The space savings of the compressed data structures improves
with the number of elements because the distance between
elements decreases as the number of elements increases. The
CPMA uses more space than C-PaC for smaller inputs but
less space than C-PaC when the input is sufficiently large
(at least 100M elements) because the CPMA leaf size, which
defines the ratio of uncompressed to compressed elements,
grows with the number of elements. As an uncompressed
data structure, P-trees take a fixed 32 bytes per element.

Evaluation on graphworkloads
We use the CPMA as the basis for a dynamic-graph container
called F-Graph and evaluate it on a suite of dynamic-graph
workloads as an application benchmark for the CPMA.We
first describe how F-Graph processes dynamic graphs with a
single CPMA. Then we present the results of the benchmark
for F-Graph, C-PaC, and Aspen.

F-Graph description. F-Graph is built on a single batch-
parallel CPMA with delta compression and byte codes. It
differs from traditional graph representations because it uses
only a single array to store both the vertex and edge data.

To understand the distinction, consider the canonical Com-
pressedSparseRow(CSR) [71] representation.Forunweighted
graphs, CSR uses two arrays: an edge array to store the edges
in sorted order (by source and then by destination), and a ver-
tex array to store offsets into the edge array corresponding to
the start of each vertex’s neighbor list. The vertex array saves
space: the edge array then only needs to store destinations
and not sources.

In contrast, storing graphs in a CPMA takes only one array.
Using a CPMA, F-Graph stores edges in 64-bit words by rep-
resenting the source in the upper 32 bits and the destination
in the lower 32 bits7. The start of each vertex’s neighbors is
implicit and can be restored with a search into the underlying
CPMA. The delta compression in the CPMA elides out the
source vertex in all edges except for the edges in the uncom-
pressed PMA leaf heads and the first edge of each vertex.

7All of the tested graphs have fewer than 232 vertices, so the edges fit in
64-bit words. If there are more than 232 vertices, we can concatenate two
64-bit words to store each edge.
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Uniform Zipfian

PMA CPMA CPMA/PMA PMA CPMA CPMA/PMA

Batch size Insert Delete D/I Insert Delete D/I Insert Delete Insert Delete D/I Insert Delete D/I Insert Delete
1E1 1.8E6 1.8E6 1.0 1.4E6 1.7E6 1.2 0.8 0.9 3.4E6 4.0E6 1.2 2.7E6 3.6E6 1.3 0.8 0.9
1E2 3.0E6 3.9E6 1.3 2.6E6 3.2E6 1.2 0.9 0.8 3.6E6 4.2E6 1.2 3.2E6 3.4E6 1.1 0.9 0.8
1E3 9.0E6 1.3E7 1.5 9.7E6 1.2E7 1.2 1.1 0.9 1.0E7 1.2E7 1.2 1.1E7 1.2E7 1.1 1.1 1.0
1E4 2.5E7 5.6E7 2.2 3.3E7 5.1E7 1.5 1.3 0.9 2.7E7 3.5E7 1.3 3.2E7 3.8E7 1.2 1.2 1.1
1E5 4.1E7 8.6E7 2.1 4.8E7 7.5E7 1.6 1.2 0.9 4.4E7 6.6E7 1.5 7.2E7 8.7E7 1.2 1.6 1.3
1E6 7.0E7 1.7E8 2.4 1.1E8 1.7E8 1.6 1.5 1.0 7.8E7 1.4E8 1.8 1.7E8 2.2E8 1.3 2.2 1.6
1E7 1.0E8 4.0E8 3.9 2.4E8 4.7E8 2.0 2.3 1.2 1.1E8 1.5E8 1.4 3.1E8 4.6E8 1.5 2.9 3.0

Table 5. Parallel batch inserts and deletes (updates per second) for uniform and zipfian distribution for the PMA and CPMA.

Num.
Elts. U-PaC PMA

PMA
U-PaC C-PaC CPMA

CPMA
C-PaC

CPMA
PMA

1E6 8.07 11.82 1.46 4.23 4.77 1.13 0.40
1E7 8.12 10.51 1.30 4.01 4.25 1.06 0.40
1E8 8.09 11.36 1.40 3.34 3.16 0.95 0.28
1E9 8.07 9.89 1.23 2.99 2.81 0.94 0.28
Table 6. Bytes per element in each of the data structures and
compression ratios. The sizeof(T) is 8 bytes.

F-Graph supports batch updates and graph algorithms by
adopting the popular approach of phasing updates and algo-
rithms separately [8, 24, 25, 39, 44, 47, 56, 61, 62, 64, 70, 74, 83].
It supports batch updates with one writer and therefore does
not use locks.
Finally, F-Graph currently supports unweighted graphs

because the CPMA is currently a key store. F-Graph also cur-
rently supports algorithms on undirected graphs because it is
built on a single CPMA, but it could be easily extended to sup-
port algorithms on directed graphs with two CPMAs — one
for incoming edges and one for outgoing edges8. Many graph
algorithms (e.g., all the ones in this paper, among others) can
be run with only the graph topology. Future work includes
extending the CPMA to a key-value store which would allow
F-Graph to store weighted graphs.

The CPMA under F-Graph has a growing factor of 1.2×.

C-PaC and Aspen description. C-PaC and Aspen support
dynamic-graph processing with compressed trees (one per
vertex) and enable concurrent updates and graph algorithms
without locking in functional mode. Since we are not concur-
rently performing updates and algorithms, we use C-PaC’s
andAspen’s in-place unweightedmodes for a fair comparison.

Systems setup.All systems run the same algorithms via the
Ligra interface, which is based on the VertexSubset/EdgeMap
abstraction [65]. Therefore, all algorithms implemented with
C-PaC and Aspen can be run on top of F-Graph with minor
syntatic changes [33, 34, 67].
8Since F-Graph stores source/destination pairs, it can store directed graphs.
However, many parallel graph algorithms require looping over both
incoming and outgoing neighbor sets efficiently.
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Figure 9. Relative speedup of graph algorithms over C-PaC
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Figure 10. Insert throughput as a function of batch size on
the FS graph.
Datasets. Table 5 lists the graphs used in the evaluation and
their sizes. We tested on real social network graphs and a
synthetic graph.We used a few social network graphs of vari-
ous sizes: the LiveJournal (LJ) [10], theCommunity Orkut
(CO)[85], the Twitter (TW) [14], and Friendster (FS) [53]
graphs. Additionally, we generated an Erdős-Rényi (ER)
graph [42] with 𝑛=107 and 𝑝 =5·10−6.

Graphalgorithms. Weevaluate theperformanceofF-Graph,
C-PaC, and Aspen on three fundamental graph algorithms:
PageRank[? ]9 (PR), connected components (CC), and single-
source betweenness centrality (BC). Figure 9 presents the
results of the evaluation, and the full version of the paper con-
tains all of the data. The algorithms are from the Ligra [65]

9The PR implementation runs for a fixed number (10) of iterations.
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Graph N M F-Graph C-PaC Aspen F/C F/A

LJ 4.8 86 0.24 0.35 0.58 0.69 0.41
CO 3.1 234 0.73 0.73 0.89 1.00 0.82
ER 10 1000 3.74 3.80 5.17 0.98 0.72
TW 62 2405 7.63 8.92 12.4 0.86 0.62
FS 125 3612 13.21 14.99 22.76 0.88 0.54
Table 7. Graph sizes (N = number of vertices, M = number
of edges, all in millions) and the memory used to store the
graphs in all of the systems in Gigabytes. A number below
1 in the F/C or F/A columnmeans that F-Graph was smaller.

distribution with minor cosmetic changes. On average, F-
Graph supports graph algorithms 1.2× faster than C-PaC and
1.3× faster than Aspen because F-Graph stores the graph
contiguously in memory.
Traversals in graph kernels can be organized on a contin-

uum depending on howmany long scans they contain, which
depends on the order of vertices accessed. On one extreme,
arbitrary-order algorithms such as PR access vertices in any
order and can be cast as a straightforward pass through the
data structure. On the other extreme, topology-order algo-
rithms such as BC access vertices depending on the graph
topology, and are therefore more likely to incur cache misses
by accessing a random vertex’s neighbors. CC is in between
arbitrary order and topology order because it startswith large
scans in the beginning of the algorithm, but it converges to
smaller scans as fewer vertices remain under consideration.

Systems with a flat layout such as F-Graph have an advan-
tage when the algorithm is closer to arbitrary order — they
support fast scans of neighbors because all of the data is stored
contiguously. For example, F-Graph is 1.5× faster than C-PaC
on average on PR. In contrast tree-based systems such as C-
PaC incurmore cachemisses during large scans due to pointer
chasing.
Since F-Graph uses a single edge array in its flat layout,

it must incur a fixed cost to reconstruct the vertex array of
offsets in all algorithms besides PR (because PR accesses all of
the edges in each iteration). The relative cost of building the
vertex array in F-Graph compared to the cost of the algorithm
depends on the amount of other work in the algorithm. For
example, building the vertex array in F-Graph takes about
10% of the total time in BC. The relative cost of building the
offset array also depends on the average degree: a higher av-
erage degree corresponds to a smaller overhead compared to
the cost of the algorithm. Finally, although this experiment
rebuilds the vertex array with each run of the algorithm, the
vertex array could be reused across computations (e.g., from
different sources) if there have been no updates.

Update throughput. F-Graph does not sacrifice updatabil-
ity for its improved algorithm speed — on average, F-Graph
is 2× faster than C-PaC and Aspen on batch inserts. Figure 10
shows that F-Graph achieves faster updates than C-PaC and
Aspen despite the theoretical dominance of trees over PMAs
in terms of point and batch updates.
To evaluate insertion throughput, we first insert all edges

from the FS graph (the largest graph we tested on). We then
add a new batch of directed edges (with potential duplicates)
to the existing graph in both systems. To generate edges for in-
serts, we sample directed edges from an RMAT generator [26]
(with 𝑎=0.5; 𝑏=𝑐 =0.1; 𝑑 =0.3 to match the distribution from
the PaC-tree paper [32]).
We note that the distribution of inserts is different here

than in Section 6. Here we see that even with a skewed distri-
bution, while traditionally challenging for PMAs, the batch
parallel CPMA achieves good insert throughput due to the
work sharing in the batch insert algorithm.

Spaceusage. Finally,we consider the spaceusageof F-Graph,
C-PaC,andAspen.Table5showsthatF-Graphusesmarginally
less space than C-PaC and about 0.6× the space that Aspen
uses because F-Graph collocates small neighbor sets by using
only one array to store all of the data (rather than two levels
of trees for vertices and edges in C-PaC and Aspen).

7 Conclusion
This paper optimizes traditional PMAs with parallel batch
updates and data compression. On average, the compressed
PMA (CPMA) outperforms compressed trees (PaC-trees) by
3× on parallel batch updates and 4× on range queries due
to the CPMA’s cache-friendliness. The CPMA uses similar
space compared to compressed PaC-trees and uses 2×−3×
less space compared to uncompressed representations. Com-
pression enables the CPMA to scale better with the number of
cores compared to the PMA because its smaller size mitigates
memory bandwidth issues with reduced memory traffic.

To further demonstrate the real-world applicability of the
CPMA, we introduce F-Graph, a dynamic-graph-processing
system built on a single CPMA, and compared it to C-PaC, a
state-of-the-art dynamic-graph-processing system built on
compressed PaC-trees. We found that F-Graph is 1.2× faster
on graph algorithms, 2× faster on batch updates, and slightly
smaller when compared to C-PaC.
The empirical advantage of the CPMA over compressed

PaC-trees demonstrates the importance of optimizing parallel
data structures for the memory subsystem. Specifically, the
CPMA’s array-based layout enables it to take advantage of the
speed of contiguousmemory accesses. Despite the theoretical
prediction, the batch-parallel CPMA empirically overcomes
the update/scan tradeoff with compressed PaC-trees due to
its locality.
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Description Scripts
PMA/CPMA uniform batch inserts (all threads) run-fig-1.sh
PMA/CPMA uniform range queries (all threads) run-fig-2.sh
PMA/CPMA uniform batch inserts (serial) run-table-2.sh (assuming you did the parallel ones via run-fig-1.sh)
PMA/CPMA batch insert scalability (strong scaling) run-serial-fig-7.sh, sh run-parallel-fig-7.sh
PMA/CPMA range query scalability (strong scaling) run-serial-fig-8.sh, sh run-parallel-fig-8.sh
PMA/CPMAmemory footprint on uniform dataset run-table-4.sh
CPMA graph evaluation run-graph-eval.sh

Table 8. PMA/CPMA experiments in the paper and their associated scripts.

A Artifact Instructions
This section summarizes how to download and use the code.
The full details (including how to compile the original bi-
naries and reproduce the experiments in the paper) can be
found at the top level directory a pdf called "CPMA arti-
fact readme" in both the git repo and the Zenodo (at https:
//zenodo.org/records/10222939).

Machine specs. Please use a machine with preinstalled g++
(at least version 11) and git. We have tested the artifact on
an Amazon c6i.metal instance running Ubuntu 20.04 with
128 threads and 256 GB of memory) and g++ 11.4.

To run PAM/CPAM, you will also need jemalloc.
To make the plots, you will need python with matplotlib.
The test machine should have multiple threads but does

not necessarily need 128 threads. In terms of memory, the
knownminimumnecessary to run the graph evaluation is 118
GB. This amount of memory is needed to run on the largest
graph we tested (Friendster).

The code should compile and run on non x86machines, but
the performance was only tested on the machine above.

Get the code. To get the code via git, clone the repo, go to
the for_artifact branch, and set up the submodules:
git clone https :// github

.com/wheatman/Packed -Memory -Array.git

cd Packed -Memory -Array

git checkout for_artifact

git submodule init

git submodule update

PMA/CPMAAPI
To use the PMA/CPMA for other purposes, follow the instruc-
tions from “Get the code” above and add #include "CPMA.h"
to the top of your main test driver.

The PMA/CPMA supports the following API:
• uint64_t size(): Return the number of elements be-
ing stored in the PMA.

• CPMA(): Construct an empty CPMA.
• CPMA(key_type *start, key_type *end): Construct
a CPMAwith the elements in the given range.

• bool has(key_type e): Return true if the key e is in
the PMA.

• bool insert(element_type e): inserts the element e
into the PMA, returns false if the key was already there.

• uint64_t insert_batch(element_ptr_type e,
uint64_t batch_size, bool sorted = false): In-
serts a batch of elements of size batch_size. Returns
the number of elements added (not counting the ones
that were already in the data structure).

• uint64_t remove_batch(key_type *e, uint64_t
batch_size, bool sorted = false): Removes a
batch of elements of sizebatch_size. Returns the num-
ber of elements removed (not counting the ones that
were not in the data structure).

• bool remove(key_type e): Removes theelementwith
key e.

• uint64_t get_size(): Returns the amount of mem-
ory (in bytes) used by the PMA.

• uint64_t sum(): Returns the sum of all elements in
the PMA.

• key_type max() / min(): Returns the smallest or
largest key stored in the PMA.

• bool map(F f): Runs function f on all elements in the
PMA.

• parallel_map(F f): Runs function f on all elements
in the PMA in parallel.

• bool map_range(F f, key_type start_key, key_type
end_key): Runs function f on all elements with keys
between start_key and end_key.

• uint64_t map_range_length(F f, key_type start,
uint64_t length): Runs functionfonatmostlength
elements starting from key at least start.

• The PMA also supports iteration as it has begin and
end functions, so you can perform operations like for
(auto el : pma). Note that this may be slower than
using the map functions.

Relationship between scripts and data
All of the scripts to run the PMA/CPMA are in the main
Packed-Memory-Array/ folder under scripts. Table ?? lists
the type of PMA/CPMA experiment and the associated script
to run it. The full documentation also includes instructions
about how to run the other systems (PAM, U-PaC, C-PaC,
Aspen).

https://zenodo.org/records/10222939
https://zenodo.org/records/10222939
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Batch
size P-trees U-PaC PMA

PMA
P-trees

PMA
U-PaC C-PaC CPMA

CPMA
C-PaC

CPMA
PMA

1E1 3.4E5 1.9E5 1.8E6 5.2 9.3 3.0E5 1.4E6 4.7 0.8
1E2 2.2E6 2.4E6 3.0E6 1.4 1.3 1.8E6 2.6E6 1.5 0.9
1E3 9.7E6 4.8E6 9.0E6 0.9 1.9 3.4E6 9.7E6 2.8 1.1
1E4 1.7E7 5.9E6 2.5E7 1.5 4.3 4.2E6 3.3E7 7.9 1.3
1E5 3.4E7 1.1E7 4.1E7 1.2 3.7 7.2E6 4.8E7 6.7 1.2
1E6 5.0E7 6.1E7 7.0E7 1.4 1.2 4.1E7 1.1E8 2.6 1.5
1E7 8.5E7 3.5E8 1.0E8 1.2 0.3 2.7E8 2.4E8 0.9 2.3

Table 9. Parallel batch insertion throughput (inserts per second) on all cores in P-trees, PaC-trees, and the PMA/CPMA.

Avg.
len. P-trees U-PaC PMA

PMA
P-trees

PMA
U-PaC C-PaC CPMA

CPMA
C-PaC

CPMA
PMA

6E0 1.9E8 2.0E8 1.7E9 8.9 8.3 1.8E8 8.1E8 4.4 0.5
5E1 4.9E8 9.5E8 6.6E9 13.6 7.0 8.5E8 5.1E9 6.0 0.8
4E2 6.0E8 2.1E9 1.3E10 21.8 6.1 1.5E9 1.5E10 10.3 1.2
3E3 6.2E8 1.0E10 1.6E10 24.9 1.5 7.0E9 2.2E10 3.1 1.4
2E4 6.5E8 1.6E10 1.7E10 26.7 1.1 1.6E10 2.4E10 1.5 1.4
2E5 6.8E8 1.8E10 1.8E10 27.1 1.0 1.9E10 2.4E10 1.3 1.3
2E6 6.9E8 1.9E10 1.9E10 27.4 1.0 1.9E10 2.4E10 1.2 1.3

Table 10. Range query throughput (elements per second) on all cores in P-trees, PaC-trees, and the PMA/CPMA.

Cores
PMA

throughput
PMA

speedup
CPMA

throughput
CPMA
speedup

1 3.0E6 1.0 2.6E6 1.0
2 4.9E6 1.6 4.6E6 1.8
4 9.2E6 3.1 9.1E6 3.5
8 1.8E7 5.9 1.8E7 6.8
16 2.7E7 9.1 3.4E7 13.2
32 4.1E7 13.7 5.6E7 21.7
64 5.3E7 17.9 8.5E7 33.1
64h 4.8E7 16.3 1.1E8 43.3

Table 11. Batch insert scalability as a function of the number
of cores. We use 64 to denote all physical cores and 64h to
denote all 128 hyperthreads.

Cores
PMA

throughput
PMA

speedup
CPMA

throughput
CPMA
speedup

1 4.5E8 1.0 2.0E8 1.0
2 8.6E8 1.9 4.2E8 2.1
4 1.7E9 3.8 8.5E8 4.2
8 3.4E9 7.5 1.7E9 8.4
16 6.7E9 14.7 3.4E9 16.8
32 1.3E10 27.6 6.8E9 33.6
64 1.7E10 37.4 1.4E10 66.9
64h 1.9E10 41.5 2.4E10 117.8

Table 12. Range query scalability as a function of the number
of cores. We use 64 to denote all physical cores and 64h to
denote all 128 hyperthreads.
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Figure 11. Insert throughput as a function of batch size with
batches generated from a zipfian distribution.
B Data tables
This section contains thedataused togenerate theplots in Sec-
tions 1, 5 and 6. The growing factor in the PMA/CPMA in the
microbenchmarks is 1.2×. The growing factor is the amount
by which the underlying array in the PMA grows when it
becomes too dense. The asymptotic bounds of the PMA still
hold as long as the growing factor is a constant greater than 1.
We chose the growing factor based on the microbenchmarks
in Section ??.
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Batch
size P-trees U-PaC PMA

PMA
P-trees

PMA
U-PaC C-PaC CPMA

CPMA
C-PaC

CPMA
PMA

1.0E1 3.9E5 2.8E5 3.4E6 8.7 12.2 1.8E5 2.7E6 15.5 0.8
1.0E2 2.4E6 2.5E6 3.6E6 1.5 1.5 1.6E6 3.2E6 2.0 0.9
1.0E3 1.3E7 7.7E6 1.0E7 0.8 1.4 5.9E6 1.1E7 1.9 1.1
1.0E4 2.4E7 1.2E7 2.7E7 1.1 2.3 9.2E6 3.2E7 3.5 1.2
1.0E5 5.8E7 2.8E7 4.4E7 0.8 1.6 1.9E7 7.2E7 3.8 1.6
1.0E6 1.0E8 9.4E7 7.8E7 0.7 0.8 5.6E7 1.7E8 3.0 2.2
1.0E7 1.9E8 4.3E8 1.1E8 0.5 0.2 3.1E8 3.1E8 1.0 2.9

Table 13. Parallel batch insertion throughput (inserts per second) for inserts from a zipfian distribution on all cores in P-trees,
PaC-trees, and the PMA/CPMA.

PR CC BC

Graph Aspen C-PaC F-Graph
Aspen
F-Graph

C-PaC
F-Graph Aspen C-PaC F-Graph

Aspen
F-Graph

C-PaC
F-Graph Aspen C-PaC F-Graph

Aspen
F-Graph

C-PaC
F-Graph

LJ 0.22 0.18 0.13 1.69 1.37 0.07 0.05 0.08 0.91 0.57 0.08 0.06 0.07 1.26 0.93
CO 0.35 0.39 0.27 1.31 1.46 0.09 0.08 0.07 1.26 1.00 0.09 0.07 0.07 1.26 0.98
ER 2.97 3.42 1.95 1.52 1.75 1.02 0.54 0.40 2.52 1.34 0.21 0.21 0.19 1.09 1.09
TW 9.52 10.77 6.98 1.36 1.54 2.00 2.08 1.77 1.13 1.17 1.07 1.12 1.18 0.91 0.95
FS 23.30 26.47 13.94 1.67 1.90 4.97 5.66 3.81 1.31 1.49 3.02 3.05 2.15 1.40 1.42

Table 14. Running times (seconds) of Aspen, C-PaC, and F-Graph on PR, CC, and BC with all (64) threads. A number above
1 in the ratio columns means that F-Graph was faster.

Batch
size Aspen C-PaC F-Graph

F-Graph
Aspen

F-Graph
C-PaC

1E1 1.10E05 1.5E5 3.7E5 3.4 2.5
1E2 8.01E05 1.3E6 1.4E6 1.7 1.1
1E3 3.98E06 3.9E6 6.2E6 1.6 1.6
1E4 6.16E06 4.3E6 1.3E7 2.2 3.1
1E5 1.63E07 1.1E7 2.2E7 1.3 2.0
1E6 3.02E07 3.6E7 8.2E7 2.7 2.3
1E7 6.92E07 7.0E7 2.1E8 3.0 2.9
1E8 2.02E08 1.9E8 4.7E8 2.3 2.5

Table 15. Parallel batch insertion throughput (inserts per
second) on all cores in Aspen, C-PaC, and F-Graph. The base
graph is the FS graph. The new insertions are sampled from
the RMAT distribution.

Section 1
Table 6 contains the data used to generate Figure 1, andTable 7
contains the data used to generate Figure 2. Table 8 reports the
cache misses of each data structure mentioned in Section 1.

Section 5
Table 9 contains the data for Figure 7, and Table 10 contains
the data for Figure 8.

Section 6

Batch inserts with zipfian distribution.
Figure ?? and Table ?? contain the data for zipfian batch

inserts.

Evaluation on graphworkloads.
Table 11 contains the data for Figure 9, and Table 12 con-

tains the data for Figure 10.
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Figure 12. Effect of growing factor on performance and size.

0
5
10
15

Si
ze

2.0 1.2

107 108 109
0

0.02
0.04
0.06
0.08

Elements

Sc
an

tim
e

Figure 13. Size (bytes) and scan time (ns) per element after
eachbatch insertion inCPMAswithdifferent growing factors.
C Growing factor sensitivity
We evaluate how the space usage, batch insertion throughput,
and scan throughput of the CPMA changes with the growing
factor.

To measure the effect of growing factor on the CPMA, we
performed the following experiment onCPMAswith growing

factors 1.1×,1.2×,...,2.0×. We started with an empty CPMA
and added 1 billion elements in parallel batches of 1 million
elements each (for a total of 1,000 batches). After each batch,
we measured the space usage of the CPMA and performed
a parallel scan over all of the elements. We also measure the
batch insertion throughput as a function of growing factor.

Figure 11 demonstrates that a smaller growing factor re-
sults in smaller average space usage and therefore better aver-
age scan performance because smaller sizes require less mem-
ory traffic. Figure 12 shows that the growing factor bounds the
worst-case space usage of the CPMA: a CPMAwith a higher
growing factor has a higherworst-case space usage. However,
the exact space usage and scan performance depend not only
on the growing factor but also on the state of the CPMA (i.e.,
how far it is from a growth).

Moreover, the relationship between insert time and grow-
ing factor is not as straightforward as the relationship be-
tween size/scan and growing factor. Figure 11 shows that the
CPMAwith growing factor 1.5× achieves the best insertion
throughput. Small growing factors (e.g., 1.1×) increase the
number of array copies since the CPMA incurs more growths,
but also decrease the size of the array which improves other
parts of inserts such as the binary search and rebalances. On
the other hand, large growing factors (e.g., 2×) have fewer
array copies but longer searches, which contribute to more
expensive inserts.
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