
Optimizing Compression Schemes for
Parallel Sparse Tensor Algebra

Helen Xu
Lawrence Berkeley National Laboratory

hjxu@lbl.gov

Tao B. Schardl
Massachusetts Institute of Technology

neboat@mit.edu

Michael Pellauer
NVIDIA

mpellauer@nvidia.com

Joel S. Emer
NVIDIA/MIT

jsemer@mit.edu

Abstract—This paper studies compression techniques for par-
allel in-memory sparse tensor algebra. We find that applying
simple existing compression schemes can lead to performance loss
in some cases. To resolve this issue, we introduce an optimized
algorithm for processing compressed inputs that can improve
both the space usage as well as the performance compared to
uncompressed inputs. We implement the compression techniques
on top of a suite of sparse matrix algorithms generated by taco,
a compiler for sparse tensor algebra. On a machine with 48
hyperthreads, our empirical evaluation shows that compression
reduces the space needed to store the matrices by over 2× without
sacrificing algorithm performance.

Index Terms—compression, tensor algebra, parallel, multi-
threaded

I. INTRODUCTION

Sparse matrix and tensor algebra operations underlie many
applications in important domains such as scientific comput-
ing [1], data science [2], and graph analytics [3]. Tensors
generalize vectors and matrices to arbitrary dimensions. Ten-
sors from these domains are large and highly sparse–that
is, almost all of their elements are zeroes. Because of the
potential to leverage ineffectual multiplications by avoiding
math and data transfers, considerable research effort has been
devoted to processing them efficiently in parallel on a single
shared-memory multicore. This paper studies compression
mechanisms to improve the running time and space usage of
parallel sparse tensor algebra in general.

The taco sparse tensor algebra compiler [4] provides a
general mechanism to generate optimized implementations of
arbitrary Einstein summations (einsums) [5] on sparse tensors
of arbitrary dimensions. To handle the wide variety of sparse
tensor representations, taco introduces the level format abstrac-
tion [6], which succinctly describes these representations as
compositions of a few simple row-based formats.

But taco’s existing row-based formats do not achieve the
same space savings as state-of-the-art workload-specific com-
pression schemes such as those for Sparse Matrix-Vector
multiplication (SpMV) [7], [8], [9], [10], [11], [12], [13], [14].
Many compression schemes for SpMV are based on delta
encoding, a classical technique that stores differences between
consecutive elements [15]. Previous work introduces compres-
sion formats and decompression codes to take advantage of
matrix structure [11], [12], [13], [14]. These schemes change
the representation to fit substructures in specific matrices
or generate code tailored to each matrix, which improves

performance but requires additional preprocessing time. Fur-
thermore, some schemes take advantage of two-dimensional
patterns such as blocking.

In this work, we demonstrate how to apply row-based
compression schemes previously described for SpMV across
generalized einsums, which requires tackling complex trade-
offs between performance and space. Directly applying simple
compression schemes can trade space savings for performance
on sparse matrix algorithms even when run in parallel. Sparse
tensor algebra is often memory-bound [16], [17], and so
intuitively there should be idle processor cycles available to
deal with more advanced compression schemes without per-
formance loss, or even with performance gain due to reduced
memory transfers as compression rate improves. However,
complex compression formats can become latency-bound de-
pending on the structure of the input matrices [18]. Therefore,
simply compressing the tensor representation may result in
slowdown on rows containing only a few nonzeroes.

To overcome this performance loss due to compression,
we introduce byte-opt, a novel optimized version of the byte
format from the Ligra+ graph-processing framework [19] that
saves space without sacrificing performance. The byte-opt
format takes advantage of per-row structure during decoding
without changing the underlying representation from byte. The
Ligra+ paper also describes the byte-RLE format, which takes
advantage of per-row structure, but changes the byte format
to improve performance at the cost of space [8], [9], [10].

To experiment with a variety of sparse matrix workloads
beyond SpMV, we integrate the encoded formats — byte, byte-
opt, and byte-RLE — on top of a suite of codes generated from
taco [4]. We use the original taco code as a baseline, which
represents sparse matrices in the classical Compressed Sparse
Row (CSR) [20] format. The original taco paper demonstrated
that taco is competitive with or outperforms other state-of-the-
art sparse linear algebra libraries such as MKL, uBLAS, and
others.
Summary of results. Figure 11 demonstrates that the encoded
formats are always smaller and generally faster than the
baseline CSR representation. On average, the byte and byte-
RLE formats are 2.3× and 2.1× smaller, respectively, than
CSR. Meanwhile, although the encoded formats are on average

1We omit byte-opt from Figure 1(b) because it uses the same amount of
space as byte.



(a) Speedup over original taco on all (48) hyperthreads. (b) Space savings over original taco.

Fig. 1: Performance and space comparison with baseline taco.

about 1.1× faster than CSR, there are algorithms that are
substantially slower on byte and byte-RLE when compared to
CSR. In contrast, byte-opt is always faster than the baseline
while achieving the same space savings as byte.
Related work. Recently, Donenfeld et al. extended taco with
RLE and LZ compression [21]. This work demonstrates the
generality of the taco framework and the “level formats”
abstraction, but the exact compression schemes are targeted
for video applications and not for SpMV-like computations.

The SMASH compression format [22] for sparse matrix
computations was shown to be slightly faster than taco’s
baseline CSR representation, but was studied sequentially.
The SMASH paper focused on co-designing compression
techniques for both hardware and software, while this paper
focuses on software.

Finally, Shun et al. extended the Ligra graph-processing
framework to run graph algorithms on encoded inputs [19].
Graph algorithms are also often memory-bound, so we draw
inspiration from the compressed graphs literature for the
compression schemes in this paper. However, the focus of this
paper is on sparse matrix and tensor algebra.

II. BACKGROUND

This section reviews preliminaries necessary to understand
the compressed tensor representations in this paper. First, it
defines tensor notation. Next, it describes the level format
tensor representation abstraction and how to process formats
with their “capabilities.” Finally, it introduces the encoded
formats that this paper studies.
Tensor notation. Tensors are multi-dimensional arrays of
arbitrary order (dimensionality) N over some field F, usually
the real or complex numbers. Matrices are the special case of
N = 2. Given a dimension i of a tensor A, we denote the
shape, or number of possible elements along that dimension,
with Si. Therefore, an order-N tensor A can be formalized as
A ∈ FS1×S2×...×SN .

We address elements in a tensor with points, which are N -
tuples of coordinates (one for each dimension). A coordinate
in dimension i of a tensor A is an integer xi ∈ {0, 1, . . . , Si−
1}. Each point has a value from F. Furthermore, we denote

Algorithm 1
append_coord(pk, ik):

1: crd[pk] = ik

Algorithm 2
append_edges(pk, pbegink, pendk):

1: pos[pk] = pendk - pbegink

the number of points in a tensor A with nonzero values as
NNZ(A).

We use uppercase letters (e.g., A) to denote matrices,
lowercase letters (e.g., x) to denote vectors, and Greek letters
(e.g., α) to denote scalars.
Format abstractions. A core part of the taco code-generation
algorithm [4] is the coordinate hierarchy abstraction that
composes level formats to define storage formats for tensors of
arbitrary dimensions [6]. The coordinate hierarchy conceptu-
ally arranges a tensor’s coordinates in a tree where each level
stores the coordinates along one dimension of the tensor. Each
root-to-leaf path in this abstraction reconstructs a point in the
tensor. Level formats define how coordinates are stored (i.e.,
which types of data structures are used) at each level of the
coordinate hierarchy.

The coordinate hierarchy and level-format abstraction pro-
vide a unified formal description that can be used to generate
many canonical sparse matrix and tensor representations. For
example, let us consider how to create the classical Com-
pressed Sparse Row (CSR) [20] for sparse matrices with
level formats. Storing a dimension i with the dense level
format implicitly represents all possible coordinates in that
dimension xi ∈ {0, 1, . . . , Si − 1} by storing all of its values.
In contrast, the compressed level format explicitly stores only
the coordinates with nonzero values. CSR can be described as
the composition of the row dimension stored in the dense level
format and the columns stored in the compressed level format.
Level formats can describe many other tensor representations,
such as COO, CSC, CSF, etc.
Level format capabilities. Each level format comes with a



Algorithm 3 pos_bounds(pk):

1: return <pos[pk], pos[pk + 1]>

Algorithm 4 pos_access(pk):

1: return crd[pk]

Byte

0000000000000001

Byte-RLE

Unencoded

0000000000001001 0000000010000001 0000100001100001

00000010 00010000 11110000 00011111 11100000

00000010 00000001 00001000 01111000 01000000 00000111 11100000

Fig. 2: An example of an unencoded list and how to compress
it using with delta encoding using the byte and byte-RLE
formats. In this example, coordinates can be up to 16 bits,
and the byte and byte-RLE formats use 8-bit chunks. The blue
dotted blocks in the byte format denote the continue bit. The
blue dotted blocks in the byte-RLE format store the headers
in 8 bits. The high-order 2 bits encode the number of bytes
(up to 4) of each element in that group, and the remaining 6
bits encode the number of elements in the following group.
For each of these values, the header stores the value minus
one.

set of capabilities that define how to assemble and access
it [6]. We describe the capabilities and implementation of the
compressed level format since it is the starting point for the
encoded formats in this paper. The compressed level format
stores coordinates explicitly in a dimension in a crd array
explicitly along with a pos array to keep track of the segment
bounds. Assembling the two arrays uses two capabilities:

• The append_coord capability adds coordinates in a
level at the end of the crd array (Algorithm 1).

• The append_edges capability stores the start and end
of each row in the pos array (Algorithm 2).

Sparse tensor algebra relies on efficient iteration through
the nonzero coordinates, which underlies core primitives
such as intersection. The compressed level format supports
coordinate position iteration with the following capabilities:

• The pos_bounds capability retrieves the locations of
coordinates in a row (Algorithm 3).

• The pos_access capability accesses the coordinates in
a row by position (Algorithm 4).

Encoded formats. Delta encoding is a canonical data com-
pression technique that stores differences (deltas) between
sequential elements rather than the full element [15]. Given a
sorted array x of n elements, delta encoding results in a new
array x′ such that x′[0] = x[0] and for all i = 1, 2, . . . , n− 1,
x′[i] = x[i]− x[i− 1].

The byte format stores the deltas in byte codes [19], [23].
Byte codes are a type of variable-length encoding, or k-bit
codes, which stores an integer as a series of k-bit chunks (here,
k = 8). Each chunk uses one bit as a continue bit, which

Algorithm 5 append_coord_byte(pk, ck, ik,
ik−1):

1: clength = encode_elt(ik - ik−1)
2: ck += clength
3: pk++

Algorithm 6
append_edges_byte(row, pbegink, pendk,
cbegink, cendk):

1: val_pos[row] = pendk - pbegink
2: crd_pos[row] = cendk - cbegink

Algorithm 7 pos_bounds_byte(pk):

1: return <crd_pos[pk], crd_pos[pk + 1],
val_pos[pk], val_pos[pk + 1]>

Algorithm 8
pos_access_byte(ck):

1: return decode_elt(crd, ck) ▷ Return the delta and how
many bytes it took

indicates if the following chunk starts a new element or is a
continuation of the previous element.

The byte-RLE format [19], [8], [9], [10] avoids the need for
a continue bit by grouping consecutive deltas that require the
same number of bytes (8-bit chunks). Each group starts with
an 8-bit header indicating the number of chunks each element
requires and the number of elements in the group.

Figure 2 presents a worked example of these encoded
formats.

III. IMPLEMENTATION

This section describes how to implement the encoded for-
mats on top of sparse tensor algebra codes generated by taco.
Storage of byte and byte-RLE. The compressed level format
originally used one pos array to store the offsets of each row
in the crd array as well as the values array since they were the
same offset. However, coordinates stored in byte and byte-RLE
have variable size, which dissociates the offsets into the crd
and vals arrays. Therefore, we replace the original pos array
with two arrays: crd_pos and val_pos. The val_pos
array stores the offsets into the values array, whereas the
crd_pos array stores the offsets into the coordinate array
stored in byte or byte-RLE format.

To store sparse matrices, we start with CSR and replace
the compressed level format in the columns with the encoded
formats.
Encoding. We describe how to build only the byte level
format for simplicity; building the byte-RLE level format is
similar. Instead of appending full coordinates, the byte level
format appends deltas between coordinates. Furthermore, it
must keep track of positions in both the coordinate and value
array separately (Algorithm 5). To append an entire row to
the tensor, the byte level format stores the start and end of



Algorithm 9
read_row_byte(pk):

1: elt_so_far = 0
2: crd_idx, crd_end, pos_idx, pos_end =

pos_bounds_byte(pk)
3: while crd_idx < crd_end do
4: delta, clength = pos_access_byte(crd_idx)
5: elt_so_far += delta
6: [Process coordinate]
7: crd_idx += clength
8: pos_idx++
9: end while

Algorithm 10
read_row_byte_opt(pk):

1: while crd_idx < crd_end do
2: if crd_idx < crd_end - 4 && ((crd + crd_idx)

& 0x80808080UL) == 0 then
3: [Decode and process next four coordinates]
4: else
5: [Decode and process next coordinate]
6: end if
7: end while

that row in both the val_pos array and crd_pos array
(Algorithm 6).

Decoding. The encoded level formats support coordinate posi-
tion iteration through the deltas between coordinates. The row
iteration keeps track of the latest decoded coordinate to recon-
struct the next coordinate from the next delta (Algorithm 9).
The level formats access the start and end of the row in both
the crd and vals arrays (Algorithm 7) and then decode the
deltas one-by-one in that row (Algorithm 8).

Optimizing byte-format decoding. Although the byte format
saves a significant amount of space over CSR, it incurs
additional computational overhead to decode the continue bit
in each byte and is therefore often slower than the baseline.

To reduce decoding overhead in the common case, we intro-
duce byte-opt, a level format that uses the same representation
as byte but optimizes the byte format’s decoding operation
by taking advantage of consecutive small deltas. Specifically,
we note that one-byte differences do not require decoding the
continue bit, so they can just be read directly from the crd
array. Therefore, byte-opt contains a fast path in the decode
loop to read four one-byte deltas at a time (Algorithm 10).

This decoding optimization takes advantage of naturally
occurring consecutive groups of small deltas. For example,
in the rma10 matrix used in the taco evaluation, about 87% of
the four-byte groups contained only one-byte deltas. Similarly,
in the cant matrix, about 81% of the deltas were one byte
each. Although both byte-opt and byte-RLE take advantage of
consecutive similarly-sized deltas, byte-opt avoids the space
overhead of byte-RLE by applying this observation to the
decode loop.

IV. EVALUATION

This section evaluates the original CSR representation in
taco as well as the encoded formats — byte, byte-opt, and
byte-RLE — in terms of algorithm performance and space
usage. We evaluate all formats on a suite of real-world
compound linear algebra applications from the taco paper:
SpMV, MATTRANSMUL, RESIDUAL, SDDMM (sampled
dense-dense matrix multiplication). We compare the encoded
formats to the original taco CSR representation to isolate the
effects of compression on performance and space.

We find that the encoded formats slightly improve perfor-
mance while significantly reducing space usage by over 2×.
In parallel, the byte and byte-RLE formats trade off between
space and performance: the byte format is slower but smaller
compared to byte-RLE. The decoding optimization in byte-
opt overcomes this tradeoff: it uses the same representation as
byte, but is on average slightly faster than byte-RLE.
Experimental setup. We implemented all encoded formats
in C++ on top of the artifact from the taco paper [4]. We
used 32-bit unsigned integers to store coordinates in the taco
level formats (uncompressed and compressed) and bytes to
store coordinates in the encoded formats. We parallelized the
algorithms using Cilk [24] and the Tapir/LLVM [25] compiler
based on LLVM [26] 14.

All experiments were run on a 48-core 2-way hyperthreaded
Intel® Xeon® Platinum 8275CL CPU @ 3.00GHz with 189
GB of memory from AWS [27]. The machine has 1.5MiB of
L1 cache, 48 MiB of L2 cache, and 71.5 MiB of L3 cache
across all of the cores. To avoid non-uniform memory access
(NUMA) issues across sockets, we ran all experiments on a
single socket with 24 physical cores and 48 hyperthreads.

All times are the median of 5 trials after one warm-up trial.
To clear the cache between runs, we read a large unrelated
array bigger than the size of L3.
Inputs. Table I reports the sizes of all matrices used in the
evaluation. We report the space used to store the coordinates.
All tested matrices were gathered from the SuiteSparse Matrix
Collection [28]. For all workloads except SDDMM, we use the
same matrices from the compound linear algebra evaluation in
taco (above the line in Table I). Since the corresponding dense
matrices for SDDMM did not fit in memory, we chose several
other matrices from SuiteSparse (below the line in Table I).

We generated random uniform 64-bit weights for all inputs
in the evaluation. The magnitude of the weights does not
matter because the values are uncompressed.
Algorithm performance. Tables II and III report the serial and
parallel running times for each algorithm on each input matrix.
Figure 1(a) reports the speedup relative to the baseline of origi-
nal taco in parallel, and Figure 3(a) reports the speedup relative
to the original taco in serial. We report the time to perform the
algorithm without the time to build the representations because
the cost of compressing the representation can be amortized
over multiple sparse matrix computations. Furthermore, the
compression step just involves one parallelizable pass through
the data [19].



Matrix Rows NNZ NNZ/rows orig. byte byte-RLE

Size Bytes/nnz Size Bytes/nnz C.R. Size Bytes/nnz C.R.
rma10 4.68E4 2.37E6 50.69 9.68 4.08 2.90 1.22 3.34 2.97 1.25 3.26
cant 6.25E4 2.03E6 32.58 8.39 4.12 2.70 1.33 3.10 2.70 1.33 3.10

cop20k 1.21E5 1.36E6 11.24 5.93 4.36 3.04 2.23 1.95 3.63 2.67 1.63
scircuit 1.71E5 9.59E5 5.61 4.52 4.71 3.01 3.14 1.50 3.32 3.46 1.36

mac econ 2.07E5 1.27E6 6.17 5.92 4.65 3.49 2.74 1.70 3.84 3.02 1.54
pwtk 2.18E5 5.93E6 27.19 24.6 4.15 8.31 1.40 2.96 8.95 1.51 2.75
G66 9.00E3 1.80E4 2.00 0.108 6.00 0.0988 5.49 1.09 0.108 5.98 1.00

har 10NN 1.03E4 7.59E4 7.37 0.345 4.54 0.194 2.56 1.77 0.214 2.82 1.61
Kuu 7.10E3 1.74E5 24.45 0.723 4.16 0.238 1.37 3.04 0.246 1.42 2.94

fashion mnist 1.00E4 7.92E4 7.92 0.357 4.51 0.221 2.79 1.62 0.245 3.10 1.46
nemeth26 9.51E3 7.61E5 80.02 3.08 4.05 0.846 1.11 3.64 0.863 1.14 3.57

TABLE I: Matrix sizes and size (in MB) of the representation of the coordinate hierarchy in original taco (orig.), byte, and
byte-RLE (excluding values). C.R. denotes the compression ratio (space savings) compared to CSR. The bolded sizes are the
smallest in each row.

In serial, on average across all workloads, we find that
byte is slower than the baseline, byte-opt is similar to the
baseline, and byte-RLE is slightly faster than the baseline.
The encoded formats were originally described specifically
for SpMV because of SpMV’s importance in scientific applica-
tions. However, all of the encoded formats are slower (between
1.1×–1.4× slower) than the baseline on SpMV because of
the relative cost of decoding the sparse matrix compared to
the other work in SpMV. Both byte and byte-opt are slower
than byte-RLE for the SpMV-based algorithms (MATTRANS-
MUL and RESIDUAL) because byte-RLE has lower decoding
overhead. Finally, the performance of SDDMM is similar for
all of the formats because the kernel involves one dense dot
product per nonzero, so the work is dominated by the matrix
multiplication. In contrast, the SpMV-based workloads just
perform one multiply and add per nonzero. We suspect that
the serial execution of these algorithms cannot saturate the
CPU’s available memory bandwidth, which limits how much
encodings can improve performance by reducing space.

In parallel, on average across all workloads, the encoded
formats are faster than the baseline. However, the encoded
formats are slower than the baseline on matrices with relatively
few nonzeroes per row (e.g., cop20k, scircuit, and mac econ)
because the resulting compression ratio is also small, so
the space savings are insufficient to outweigh the additional
computational overhead. In contrast, the matrices with better
compression ratio (e.g., rma10, cant, and pwtk) tend to result
in better performance with the encoded formats.

In general, the encoded formats achieve better performance-
per-byte both in serial and in parallel compared to the baseline.
For example, for parallel SpMV on rma10, CSR’s time-space
product is 0.89 (ms) × 4.08 (bytes per nonzero) = 3.63,
whereas byte’s time-space product is is 1.07 (ms) × 1.22
(bytes per nonzero) = 1.30.

Figure 3(b) reports the self-relative parallel speedup
(T1/T48) for each format averaged across inputs for each work-
load. On SpMV, the baseline achieves 3.2× speedup, while
the encoded formats achieve up to 4.9× speedup. Similarly,
on SDDMM, the baseline achieves 14× speedup, while the

encoded formats achieve up to 16× speedup. SpMV has rela-
tively little parallelism compared to SDDMM, so all formats
have less speedup on SpMV. In both cases, the encoded
formats achieve better speedup than the baseline because they
mitigate memory bandwidth limitations in parallel.
Space usage. Figure 1(b) and Table I report the space usage
of the matrices in all of the formats. Both the byte and
byte-opt formats use the byte representation, since byte-opt
only changes the decode routine. On the matrices from the
taco evaluation, the byte format is about 2.3× smaller than
CSR, whereas the byte-RLE format is about 2.1× smaller
than CSR. On the matrices used for SDDMM, both byte
and byte-RLE are about 2× smaller than CSR. Many of the
matrices (e.g., cant, pwtk, nemeth, etc.) are narrow-banded
or consist of narrow-banded blocks. This naturally-occuring
matrix structure improves the compression ratio since nonzero
elements are packed in nearby locations. Furthermore, the
compression ratio improves with the number of nonzeroes
per row because every matrix representation in this paper
stores the row dimension in an uncompressed level format.
The metadata required for the encoded formats at the row level
is twice that of the compressed representation, but overall the
compressed formats save space by reducing the size of the
column level.

V. CONCLUSION

This work demonstrates the potential for compression
schemes from the SpMV literature to speed up other types
of sparse linear algebra while saving space. Using the byte,
byte-opt, and byte-RLE formats on top of code generated from
taco, we are able to significantly reduce the space usage of
the sparse matrices without sacrificing parallel performance.
Future work includes integrating these compression formats
into taco as well as exploring the impact of compression on
tensor algebra in higher dimensions.



(a) Speedup over original taco when run on one hyperthread. (b) Self-relative parallel speedup on 48 hyperthreads (T1/T48).

Fig. 3: Serial performance compared to original taco and self-relative parallel speedup.

SpMV (y = Ax) MATTRANSMUL (y = αAT x+ βz)

Matrix orig. byte byte-opt byte-RLE orig. byte byte-opt byte-RLE

T1 T48 T1 T48 T1 T48 T1 T48 T1 T48 T1 T48 T1 T48 T1 T48

rma10 4.26 0.89 4.64 1.07 3.47 0.86 2.89 0.71 4.30 0.86 3.56 0.83 3.23 0.77 2.88 0.74
cant 3.57 0.77 3.70 0.99 2.69 0.75 2.22 0.63 5.81 0.74 2.64 0.70 2.50 0.64 2.24 0.64

cop20k 3.74 0.85 7.56 1.14 7.70 1.14 6.59 1.08 5.94 0.84 5.37 0.88 5.70 0.97 5.69 1.04
scircuit 2.24 0.81 4.87 0.88 5.02 0.89 4.62 0.86 4.55 0.62 4.34 0.60 4.82 0.69 4.90 0.86

mac econ 1.90 2.62 3.55 0.86 3.52 0.86 3.02 0.77 2.03 0.78 2.92 0.56 3.17 0.58 3.17 0.79
pwtk 7.03 1.28 10.62 1.89 7.81 1.42 6.86 1.17 6.45 1.15 8.10 1.22 7.74 1.14 7.10 1.15

RESIDUAL (y = b−Ax)

Matrix orig. byte byte-opt byte-RLE

T1 T48 T1 T48 T1 T48 T1 T48

rma10 4.32 0.83 4.07 0.97 3.24 0.75 2.93 0.73
cant 5.79 0.96 3.09 0.85 2.57 0.61 2.25 0.69

cop20k 5.44 0.86 7.13 1.00 7.19 0.98 6.86 1.12
scircuit 4.46 0.75 4.41 0.76 4.86 0.70 4.86 0.88

mac econ 4.86 0.64 2.99 0.64 3.27 0.59 3.16 0.77
pwtk 7.45 1.09 9.00 1.62 7.61 1.10 6.93 1.13

TABLE II: Serial (T1) and parallel (T48) running times (in milliseconds) of compound linear algebra applications with the
original taco (orig.) and the encoded formats. The bolded times are the lowest for each matrix on each workload.

Matrix orig. byte byte-opt byte-RLE

T1 T48 T1 T48 T1 T48 T1 T48

G66 188.90 18.15 208.52 17.89 190.19 18.52 190.19 16.99
har 10NN 886.40 55.10 939.71 54.64 920.82 53.18 904.75 53.17

Kuu 1,302.46 68.20 1,296.83 62.65 1,313.03 61.95 1,313.94 64.26
fashion mnist 921.59 86.31 944.83 59.77 912.23 59.42 912.92 58.96

nemeth26 7,515.85 474.89 7,651.98 476.06 7,538.73 477.28 7,623.50 474.20

TABLE III: Serial (T1) and parallel (T48) running times (in milliseconds) of SDDMM with the original taco (orig.) and the
encoded formats. The bolded times are the lowest in each row.



ACKNOWLEDGMENT

Research was sponsored by the United States Air Force
Research Laboratory and the Department of the Air Force
Artificial Intelligence Accelerator and was accomplished un-
der Cooperative Agreement Number FA8750-19-2-1000. The
views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Department
of the Air Force or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
herein.

REFERENCES

[1] Y. Saad, Iterative methods for sparse linear systems, 2nd ed. SIAM,
2003.

[2] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in ISCA, 2017.

[3] T. Mattson et al., “Standards for graph algorithm primitives,” in HPEC,
2013.

[4] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The
tensor algebra compiler,” OOPSLA, 2017.

[5] M. Ricci and T. Levi-Civita, “Méthodes de calcul différentiel absolu et
leurs applications,” Mathematische Annalen, 1900.

[6] S. Chou, F. Kjolstad, and S. Amarasinghe, “Format abstraction for sparse
tensor algebra compilers,” OOPSLA, 2018.

[7] J. Willcock and A. Lumsdaine, “Accelerating sparse matrix computations
via data compression,” in ICS, 2006.

[8] K. Kourtis, G. Goumas, and N. Koziris, “Exploiting compression oppor-
tunities to improve SpMxV performance on shared memory systems,”
TACO, 2011.

[9] K. Kourtis et al., “Improving the performance of multithreaded sparse
matrix-vector multiplication using index and value compression,” in
ICPP, 2008.

[10] K. Kourtis, G. Goumas, and N. Koziris, “Optimizing sparse matrix-
vector multiplication using index and value compression,” in CF, 2008.

[11] M. Belgin et al., “Pattern-based sparse matrix representation for
memory-efficient SMVM kernels,” in ICS, 2009.

[12] K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris, “CSX: an extended
compression format for spmv on shared memory systems,” in PPOPP,
2011.

[13] G. E. Blelloch, I. Koutis, G. L. Miller, and K. Tangwongsan, “Hierarchi-
cal diagonal blocking and precision reduction applied to combinatorial
multigrid,” in SC, 2010.

[14] A. Buluç, S. Williams, L. Oliker, and J. Demmel, “Reduced-bandwidth
multithreaded algorithms for sparse matrix-vector multiplication,” in
IPDPS, 2011.

[15] S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal
Processing. California Technical Publishing, 1997.

[16] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris,
“Understanding the performance of sparse matrix-vector multiplication,”
in PDP, 2008.

[17] W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F.
Smith, “Achieving high sustained performance in an unstructured mesh
CFD application,” in SC, 1999.

[18] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis, and N. Koziris,
“Performance evaluation of the sparse matrix-vector multiplication on
modern architectures,” The Journal of Supercomputing, 2009.

[19] J. Shun, L. Dhulipala, and G. E. Blelloch, “Smaller and faster: Parallel
processing of compressed graphs with Ligra+,” in DCC, 2015.

[20] W. F. Tinney and J. W. Walker, “Direct solutions of sparse network
equations by optimally ordered triangular factorization,” Proceedings of
the IEEE, 1967.

[21] D. Donenfeld, S. Chou, and S. Amarasinghe, “Unified compilation for
lossless compression and sparse computing,” in CGO, 2022.

[22] K. Kanellopoulos et al., “SMASH: Co-designing software compression
and hardware-accelerated indexing for efficient sparse matrix opera-
tions,” in MICRO, 2019.

[23] I. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes (2nd Ed.):
Compressing and Indexing Documents and Images. Morgan Kaufmann
Publishers Inc., 1999.

[24] Intel Corporation, Intel Cilk Plus Language Specification, 2010.
[25] T. B. Schardl, W. S. Moses, and C. E. Leiserson, “Tapir: Embedding re-

cursive fork-join parallelism into LLVM’s intermediate representation,”
TOPC, 2019.

[26] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in CGO, 2004.

[27] Amazon, “Amazon web services,” https://aws.amazon.com/.
[28] T. A. Davis and Y. Hu, “The university of florida sparse matrix

collection,” TOMS, 2011.


