
Closing the Gap Between Cache-oblivious and Cache-adaptive
Analysis

Michael A. Bender

Rezaul A. Chowdhury

Rathish Das

Stony Brook University

Stony Brook, NY, USA

{bender,rezaul,radas}@cs.stonybrook.edu

Rob Johnson

VMware Research

Palo Alto, CA, USA

robj@vmware.com

William Kuszmaul

Andrea Lincoln

Quanquan C. Liu

Jayson Lynch

Helen Xu

MIT CSAIL

Cambridge, MA, USA

{kuszmaul,andreali,quanquan}@mit.edu

{jaysonl,hjxu}@mit.edu

ABSTRACT

Cache-adaptive analysis was introduced to analyze the performance

of an algorithm when the cache (or internal memory) available

to the algorithm dynamically changes size. These memory-size

fluctuations are, in fact, the common case in multi-core machines,

where threads share cache and RAM. An algorithm is said to be

efficiently cache-adaptive if it achieves optimal utilization of the

dynamically changing cache.

Cache-adaptive analysis was inspired by cache-oblivious analy-

sis. Many (or even most) optimal cache-oblivious algorithms have

an (a,b, c)-regular recursive structure. Such (a,b, c)-regular algo-
rithms include Longest Common Subsequence, All Pairs Shortest

Paths, Matrix Multiplication, Edit Distance, Gaussian Elimination

Paradigm, etc. Bender et al. (2016) showed that some of these opti-

mal cache-oblivious algorithms remain optimal even when cache

changes size dynamically, but that in general they can be as much

as logarithmic factor away from optimal. However, their analysis

depends on constructing a highly structured, worst-case memory

profile, or sequences of fluctuations in cache size. These worst-case

profiles seem fragile, suggesting that the logarithmic gap may be

an artifact of an unrealistically powerful adversary.

We close the gap between cache-oblivious and cache-adaptive

analysis by showing how to make a smoothed analysis of cache-

adaptive algorithms via random reshuffling of memory fluctuations.

Remarkably, we also show the limits of several natural forms of

smoothing, including random perturbations of the cache size and

randomizing the algorithm’s starting time. Nonetheless, we show

that if one takes an arbitrary profile and performs a random shuffle

on when “significant events” occur within the profile, then the

shuffled profile becomes optimally cache-adaptive in expectation,

even when the initial profile is adversarially constructed.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

These results suggest that cache-obliviousness is a solid foun-

dation for achieving cache-adaptivity when the memory profile is

not overly tailored to the algorithm structure.

CCS CONCEPTS

• Theory of computation→Caching and paging algorithms;

Parallel algorithms.

KEYWORDS

Cache-adaptive algorithms; smoothed analysis; cache-oblivious

algorithms

ACM Reference Format:

Michael A. Bender, Rezaul A. Chowdhury, RathishDas, Rob Johnson,William

Kuszmaul, Andrea Lincoln, Quanquan C. Liu, Jayson Lynch, and Helen Xu.

2022. Closing the Gap Between Cache-oblivious and Cache-adaptive Analy-

sis. In Proceedings of ACM Conference (Conference’17). ACM, New York, NY,

USA, 30 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

On multi-threaded and multi-core systems, the amount of cache

available to any single process constantly varies over time as other

processes start, stop, and change their demands for cache. On most

multi-core systems, each core has a private cache and the entire

system has a cache shared between cores. A program’s fraction of

the private cache of a core can change because of time-sharing, and

its fraction of the shared cache can change because multiple cores

use it simultaneously [14, 23, 24].

Cache-size changes can be substantial. For example, there is fre-

quently a winner-take-all phenomenon, in which one process grows

to monopolize the available cache [25]; researchers have suggested

periodically flushing the cache to counteract this effect [57]. With

this policy, individual processes would experience cache allocations

that slowly grow to the maximum possible size, then abruptly crash

down to 0.

Furthermore, even small cache-size changes can have catastrophic

effects on the performance of algorithms that are not designed to

handle them. When the size of cache shrinks unexpectedly, an

algorithm tuned for a fixed-size cache can thrash, causing its per-

formance to drop by orders of magnitude. (And if the cache grows,

an algorithm that assumes a fixed cache size can leave performance

on the table.)

This is such an important problem that many systems provide

mechanisms to manually control the allocation of cache to different

processes. For example, Intel’s Cache Allocation Technology [46]

allows the OS to limit each process’s share of the shared proces-

sor cache. Linux’s cgroups mechanism [43] provides control over

each application’s use of RAM (which serves as a cache for disk).

Although these mechanisms can help avoid thrashing, they require

manual tuning and can leave cache underutilized. Furthermore,

systems may be forced to always leave some cache unused in order

to be able to schedule new jobs as they arrive.

A more flexible approach is to solve this problem in the algo-

rithms themselves. If algorithms could gracefully handle changes

in their cache allocation, then the system could always fully utilize

the cache. Whenever a new task arrives, the system could reclaim

some cache from the running tasks and give it to the new task,

without causing catastrophic slowdowns of the older tasks. When

a task ends, its memory could be distributed among the other tasks

on the system. The OS could also freely redistribute cache among

tasks to prioritize important tasks.

Practitioners have proposed many algorithms that heuristically

adapt to cache fluctuations [13, 31, 44, 45, 47, 48, 64–66]. However,

designing algorithms with guarantees under cache fluctuations is

challenging and most of these algorithms have poor worst-case

performance.

Theoretical approaches to adaptivity. Barve and Vitter [2, 3]

initiated the theoretical analysis of algorithms under cache fluctua-

tions over twenty years ago by generalizing the external-memory/disk-

access machine (DAM) model [1] to allow the cache size to change.

They gave optimal algorithms under memory fluctuations for sort-

ing, FFT, matrix multiplication, LU decomposition, permutation,

and buffer trees. In their model, the cache can change size only

periodically and algorithms know the future size of the cache and

adapt explicitly to these forecasts.

Writing programs and analyzing algorithms that explicitly adapt

to changing memory is complicated because the algorithm needs to

pay attention to the changing parameter of cache sizes. Moreover,

it’s hard to have performance guarantees that apply to all possible

ways that memory can change size. Thus, most prior work by

practitioners is empirical without guarantees, and even the Barve

and Vitter work only has guarantees for a restricted class of memory

profiles, which limits its generality.

More recently, Bender et al. [5, 6] proposed using techniques

from cache-oblivious algorithms to solve the adaptivity problem.

Since cache-oblivious algorithms are oblivious to the size of the

cache, it is compelling that the algorithms should work well when

the cache size changes dynamically. They defined the cache-adaptive

model, which is akin to the ideal-cache model [28, 29] from cache-

oblivious analysis, except that the size of memory can change ar-

bitrarily over time. They showed that many cache-oblivious algo-

rithms remain optimal even when the size of cache changes dy-

namically. However, they also showed that some important cache-

oblivious algorithms are not optimal in the cache-adaptive model.

Concretely, they define optimality in terms of howmuch progress

an algorithm makes under a givenmemory profile and they also

show that only a restricted class of memory profiles need to be con-

sidered. A memory profilem(t) is a function specifying the size of

memory at each time t . Prior results show that, for cache-oblivious

algorithms, and up to a constant factor of resource augmentation,

we need only consider square profiles, i.e., memory profiles which

can be decomposed into a sequence of boxes (□1,□2, . . .), where a
box of size x means that memory remains at size x blocks for x time

steps. In its strongest form, cache adaptivity requires that for an

algorithmA, the total amount of progress thatA makes on a series

of boxes (□1.□2, . . .) should be within a constant factor of the total

potential

∑
i ρ(|□i |) of those boxes, where the potential ρ(|□i |) of

a box □i is defined to be the maximum number of operations that

A could possibly perform in □i , where the max is taken over all

possible places that □i could occur in the execution of A.
1

Thus, Bender et al.’s results show that cache-obliviousness is a

powerful technique for achieving adaptivity without the burden

of having to explicitly react to cache-size changes. They define

optimality in terms of worst-case, adversarial memory profiles,

which makes their optimality criteria very strong, but also tough

to meet. It’s natural to ask how algorithms perform under less

adversarial profiles. This is important because for a large class

of cache-oblivious algorithms, there exists highly structured and

pernicious worst-case profiles on which the algorithms do not run
optimally.

Cache-oblivious algorithms and (a,b, c)-regularity.One of the
fundamental insights in the design of cache-oblivious algorithms is

that, by using certain basic recursive structures in the design of an al-

gorithm, one can get optimal cache-obliviousness for free. The algo-

rithms with this recursive structure are known as (a,b, c)-regular
algorithms. If an algorithm is (a,b, c)-regular, its I/O-complexity

satisfies a recurrence of the form T (N) = aT (N /b) + Θ(1 + N c/B),

1
Several variations on this definition have also been used [5, 6] when considering par-

ticular problems (e.g., matrix multiplication). For (a, b, c)-regular algorithms, which

are the focus of this paper, the used definitions are equivalent (and thus, as a convention,

we use the most general definition).

where B is the block size of the cache and Θ(1 + N c/B) represents
the cost of scanning an array of size N c

.

For the purposes of cache-adaptivity, the only interesting cases

are when a > b and c ≤ 1.
2
When a > b, an algorithm’s per-

formance is sensitive to the size of the cache, and so adaptivity

becomes important.

If cache-oblivious algorithms were always cache-adaptive, then

we could view adaptivity as a solved problem. Unfortunately, this

is not the case. Bender et al. showed that, for a > b, (a,b, c)-regular
algorithms are adaptive if and only if c < 1.

The worst-case gap between obliviousness and adaptivity.

When c = 1, there can be a logarithmic gap between an algorithm’s

performance in the ideal cache and cache-adaptive models.
3

Although many classical cache-oblivious algorithms are (a,b, c)-
regular [17, 18, 28, 30, 49, 51, 56], many notable algorithms, in-

cluding cache-oblivious dynamic programming algorithms [17],

naive matrix multiplication [28], sub-cubic matrix multiplications

(e.g., Strassen’s algorithm [55]), and Gaussian elimination [17], have

a > b and c = 1 and hence fall into this gap. These algorithms are

kernels of many other algorithms, including algorithms for solv-

ing linear equations in undirected and directed Laplacian matrices

(see e.g., [26, 37, 52]), APSP [53, 54, 67], triangle counting [9], min-

weight cycle [60], negative triangle detection and counting [60],

and the replacement paths problem [60]. Lincoln, et al. [40] show

that some algorithms can be rewritten to reduce c , making them

adaptive, but the transformation is complex, introduces overhead,

and doesn’t work for all algorithms.

The goal of this paper is to show that this gap closes under less

stringent notions of optimality.

Beyond the worst-case gap. Previous analysis shows that in the

worst case there is a gap between the cache-adaptive and ideal-

cache/cache-oblivious models. However, the logarithmic gap may

just be an artifact of an unrealistically powerful adversary. The

proof depends on exhibiting worst-case memory profiles that force

the algorithm to perform poorly. The worst-case profiles mimic the

recursive structure of the algorithm and maintain a tight synchro-

nization between the algorithm’s execution and the fluctuations

in memory size. A concrete example of the worst-case profile for

matrix multiplication can be found in Section 3.

The natural question to ask is: what happens to these bad exam-

ples when they get tweaked in some way, so that they no longer

track the program execution so precisely? Is this gap robust to the

inherent randomness that occurs in real systems?

Results

Our main result shows that, given any probability distribution Σ
over box-sizes, if each box has size chosen i.i.d. from the distribution

Σ, (a,b, c)-regular algorithms achieve optimal performance in the

2
When a < b and c = 1, the algorithm runs in linear time independent of the cache

size, and hence is trivially cache-adaptive. We are not aware of any (a, b, c)-regular
cache-oblivious algorithms with c > 1.

3(a, b, c)-regular algorithms are cache-adaptive when a < b or c < 1. When a = b
and c = 1, no algorithm can be optimally cache-adaptive because such algorithms are

already a Θ(log M
B) factor away from optimal in the DAM model [22]. This is why

two-way merge sort, classic (i.e., not cache-oblivious) FFT, etc. cannot be optimal DAM

algorithms.

cache-adaptive model, matching their performance in the ideal

cache model.

Theorem 1. Consider an (a,b, c)-regular algorithmA, where a > b
are constants in N and c = 1. Let Σ be a probability distribution over
box sizes, and consider a sequence of boxes (□1,□2,□3, . . .) drawn
independently from the distribution Σ. If all boxes in Σ are sufficiently
large in Ω(1), thenA is cache-adaptive in expectation on the random
sequences (□1,□2, . . .).

Proving this requires a number of new combinatorial ideas, an

overview of which appear in Section 4. The full version of the paper

formally proves this positive result.

The proof begins by reinterpreting cache-adaptivity in expec-

tation in terms of the expected stopping time of a certain natural

martingale. We then show a relationship between the expected

stopping time for a problem and the expected stopping times for

the child subproblems. A key obstacle, however, is that the linear

scans performed by the algorithm can cause the natural recurrence

on stopping times to break. In particular, the recurrence is able to

relate the time to complete subproblems (including scans) and the

time to complete their parent problems (excluding scans); but is

unable to consider the parent problems in their entirety (including

scans). We fill in this gap by showing that the total effect of the

scans at all levels of the recursion on the expected stopping time is

at most a constant factor. By analyzing the aggregate effect of scans

across all levels of the recursion, we get around the fact that certain

scans at specific levels can have far more impact on the expected

stopping time than others.

Robustness to weaker smoothings.We further show that draw-

ing box-sizes indepenently from one-another is necessary in the

sense that several weaker forms of smoothing fail to close the log-

arithmic gap between the ideal-cache and cache-adaptive models.

We show that worst-case profiles are robust to all of the following

perturbations: randomly tweaking the size of each box by a con-

stant factor, randomly shifting the start time of the algorithm, and

randomly (or even adversarialy) altering the recursive structure of

the profile.

These smoothings substantially alter the overall structure of the

profile, and eliminate any initial alignment between the program

and the structure of the memory profile. Nonetheless, the smoothed

profiles remain worst-case in expectation. That is, as long as some

recursive structure is maintained within the profile, the algorithm

is very likely to gradually synchronize its execution to the profile

in deleterious ways. In this sense, even a small amount of global

structure between the sizes of consecutive boxes is enough to cause

the logarithmic gap.

Map. This paper is organized as follows. Section 2 gives the defini-

tions and conventions used in the rest of the paper. Section 3 pro-

vides intuition for the fragility of worst-case memory profiles. Sec-

tion 4 explains the intuition for the proofs of the main theorems and

sketch the combinatorial ideas behind the proofs. The full proofs

can be found in the full version of this paper. Section 5 gives an in-

depth examination of previous work, and Section 6 gives concluding

remarks.

2 PRELIMINARIES

The cache-adaptive model. The cache-adaptive (CA) model [5,

6] extends the classical disk access model (DAM) [1] to allow for

the cache to change in size in each time step. In the DAM, the

machine has a two-level memory hierarchy consisting of a fast

cache (sometimes also referred to as memory or RAM) of sizeM
words and a slow disk. Data is transferred between cache and disk

in blocks of size B. An algorithm’s running time is precisely the

number of block transfers that it makes. Similarly, each I/O is a unit

of time in the CA model.

In the cache-adaptive model, the size of fast memory is a (non-

constant) functionm(t) giving the size of memory (in blocks) after

the t th I/O. We useM(t) = B ·m(t) to represent the size, in words,

of memory at time t . We callm(t) and M(t) memory profiles in
blocks and words, respectively. Although the cache-adaptive model

allows the size of cache to change arbitrarily from one time-step

to the next, prior work showed that we need only consider square
profiles [5, 6]. Throughout this paper, we use the terms box and

square interchangeably.

Definition 1 (Square Profile [5]). A memory profile M orm is a
square profile if there exist boundaries 0 = t0 < t1 < . . . such that
for all t ∈ [ti , ti+1),m(t) = ti+1−ti . In other words, a square memory
profile is a step function where each step is exactly as long as it is tall.
We will use the notation (□1,□2, . . .) to refer to a profile in which the
i-th square is size |□i |.

For convenience, we assume that cache is cleared at the start of

each square. The paging results underlying cache-adaptivity [6]

explain that this assumption is w.l.o.g. With this assumption, an

algorithm gets to reference exactly X distinct blocks in a square

of size X . Since any memory profile can be approximated with

a square profile up to constant factors [5], any random distribu-

tion of generically produced profiles has a corresponding random

distribution over square profiles that approximates it.

Recursive algorithms with (a,b, c)-regular structure. This pa-
per focuses on algorithms with a common recursive structure.

Definition 2. Let a,b ∈ N be constants, b > 1 and c ∈ [0, 1]. An
(a,b, c)-regular algorithm is a recursive algorithm that, when run
on a problem of size n blocks (equivalently N = nB words), satisfies
the following:
• On a problem of size n blocks, the algorithm accesses Θ(n)
distinct blocks.
• Until the base case (when n ∈ Θ(1)), each problem of size b
blocks recurses on exactly a subproblems of size n/b.
• Within any non-base-case subproblem, the only computation
besides the recursion is a linear scan of size N c /B. This
linear scan is any sequence of N c contiguous memory accesses
satisfying the property that a cache of a sufficiently large
constant size can complete the sequence of accesses in time
O(N c/B). Parts of the scan may be performed before, between,
and after recursive calls.

Remark 1. When referring to the size of a subproblem, box, scan,
etc., we use blocks, rather than machine words, as the default unit.
We define (a,b, c)-regular algorithms to have a base case of size O(1)

blocks. This differs slightly from previous definitions [5, 6] which
recurse down to O(1) words.

Remark 2. The definition of linear scans ensures the following useful
property. Consider a linear scan of size N c/B. Consider any sequence
of squares (□1,□2, . . . ,□j), where each |□i | is a sufficiently large
constant, and where

∑j
i=1 |□i | = Ω(N c/B), for a sufficiently large

constant in theΩ. Then the sequence of squares can be used to complete
the scan in its entirety.

The following theorem gives a particularly simple rule for when

an (a,b, c)-regular algorithm is optimal.

Theorem 2 ((a,b, c)-regular optimality [5], informal). Suppose A
is an (a,b, c)-regular algorithm that is optimal in the DAM model.
ThenA is optimal in the cache-adaptive model if c < 1 or ifb > a and
a ≥ 1. If c = 1 and a ≥ b, thenA isO(logb N) away from optimal on
an input of size N in the cache-adaptive model. Optimality is defined
as in [6], or equivalently as given by the notion of efficiently cache

adaptive, defined below.

Paper goal: closing the logarithmic gap. The above theorem

uses a very structured memory profile in the case of c = 1 and

a ≥ b to tease out the worst possible performance of (a,b, 1)-regular
algorithms. We explore the smoothing of these profiles when a > b
in this paper. We leave the case of a = b for future work because

we prioritize the broader class of algorithms described by a > b.

Progress bounds in the cache-adaptivemodel.When an (a,b, c)-
regular algorithm is run on a square profile, the progress of a box
is the number of base-case subproblems performed (at least partly)

within the box. Define the potential ρ(|□|) of a box of size |□| to
be the maximum possible progress that a size |□| box could ever

make starting at any memory access of any execution of A on a

problem of arbitrary size.

Lemma 1. The potential of a box □ for an (a,b, c)-regular algorithm
A with a > b and c = 1 is ρ(|□|) = Θ(|□|logb a).

Proof. A square □ can complete any subproblem A whose size

in blocks is sufficiently small in Θ(|□|). This allows □ to complete

Ω(alogb |□ |) = Ω(|□|logb a) base-case subproblems, which proves

ρ(|□|) ≥ Ω(|□|logb a).
On the other hand, a square □ is unable to complete in full any

subproblem A whose size in blocks is sufficiently large in Θ(|□|).
It follows that □ can complete base cases from at most two such

subproblemsA (the one thatA begins □ in and the one thatA ends

□ in). This limits the number of base cases completed to ρ(|□|) ≤
O(|□|logb a). □

Intuitively, the potential of a box □ is essentially the same as the

number of base-case recursive leaves in a problem of size |□|.

Optimality in the cache-adaptive model. The progress of each

square is upper bounded by its potential. An execution of the al-

gorithm A on a problem of size n blocks and on a square pro-

file M is efficiently cache-adaptive if the sequence of squares

(□1,□2, . . . ,□j) given to the algorithm (with the final square rounded

down in size to be only the portion of the square actually used)

satisfies

j∑
i=1

ρ(|□i |) ≤ O(nlogb a). (1)

The right-hand side of the expression represents the total amount

of progress that must be made by any (a,b, c)-regular algorithm
on a problem of size n in order to complete. In summary, an execu-

tion is efficiently cache-adaptive on the profile if every square in

the profile makes progress asymptotically equal to its maximum

possible potential.

An algorithm A (rather than just a single execution) is effi-
ciently cache-adaptive (or cache-adaptive for short) if every ex-

ecution of A is efficiently cache-adaptive on every infinite square-

profile consisting of squares that are all of sizes sufficiently large

in O(1).
By Lemma 1, Inequality 1 can be written as

∑j
i=1 |□i |

logb a ≤
O(nlogb a). Since all squares □i completed by the algorithm are of

size O(n), an equivalent requirement is

j∑
i=1

min(n, |□i |)logb a ≤ O(nlogb a). (2)

This requirement has the advantage that the size of the final square

□j cannot affect the veracity of the condition. Consequently, when

using this version of the condition, we may feel free to not round
down the size of the final square □j in the profileM .

The definition of efficiently cache-adaptive is easily adapted to

use an arbitrary progress function and an arbitrary algorithm A
that need not be (a,b, c)-regular.4

Cache-adaptivity over distributions of profiles. We now de-

fine what it means for an algorithm to be cache-adaptive in expec-

tation over a distribution of memory profiles. This allows us to

perform smoothed and average-case analyses in subsequent sec-

tions.

Definition 3 (Efficiently cache-adaptive in expectation). LetM
be a distribution over (infinite) square memory profiles. Let M be
a square-profile (□1,□2, . . .) drawn from the distributionM, and
define Sn to be the number of squares in the profile required by an
(a,b, c)-regular A to complete on any problem of size n. We say that
A is (efficiently) cache-adaptive in expectation on M if for all
problem sizes n,

E

Sn∑
i=1

min(n, |□i |)logb a
 = O(nlogb a).

The bulk of this paper is devoted to investigating which memory-

profile distributions cause (a,b, 1)-regular algorithms to be cache-

adaptive in expectation.

4
There is an alternative progress function based on operations. Consider the progress

function in which each square makes progress equal to the number of memory ac-

cesses it completes. This generalizes our definition to non(a, b, c)-regular algorithms

and, for many natural (a, b, c)-regular algorithms, this yields the same definition of

cache-adaptivity as the above progress definition. However, the memory-access-based

definition of progress can differ from our definition if some large scans are very non-

homogeneous, i.e. if they contain portions in which a single small box can complete a

large number of memory accesses. We use the sub-problem-based definition so that

our results can apply to all (a, b, c)-regular algorithms.

A useful lemma. We conclude the section by presenting a use-

ful lemma, known as the No-Catch-up Lemma, that is implicitly

present in [6]. The lemma will be used as a primitive throughout

the paper, and for completeness, a full proof is given in the full

version of the paper. Intuitively, the No-Catch-up Lemma states

that delaying the start time of an algorithm can never help it finish

earlier than it would have without the start time delay.

Lemma 2. Let σ = (r1, r2, r3, . . .) be a sequence of memory refer-
ences, and let S = (□1,□2, . . .□k) be a sequence of squares. Suppose
that if □1 starts at ri , then □k finishes at r j . Then, for all i ′ < i , if □1
starts at ri′ , then for some j ′ ≤ j, □k finishes at r j′ .

3 WHAT BAD MEMORY PROFILES LOOK

LIKE

We begin by explaining how an (a,b, c)-regular algorithm can fail

to be adaptive in the worst case, and why there is reason to hope

that the worst cases are brittle.

*MM-Scan: a canonical non-adaptive algorithm. Consider a divide-

and-conquer matrix-multiplication algorithmMM-Scan that com-

putes eight subresults and then merges them together using a linear

scan.MM-Scan is an (8, 4, 1)-regular cache-oblivious algorithm and

its recurrence relation is T (N) = 8T (N /4) + Θ(N /B). Its I/O com-

plexity is O(N 3/2/
√
MB), which is optimal for an algorithm that

performs all the elementary multiplications of a naïve nested-loop

matrix multiply [28, 29].

However, since MM-Scan has c = 1 in its recurrence, it is not

adaptive: there are bad memory profiles that cause it to run slowly

despite giving MM-Scan ample aggregate resources
5
. This section

gives intuition for what these bad profiles look like.

A worst-case profile for MM-Scan. Here’s how to make a bad

profile for MM-Scan [5]. The intuition is to give the algorithm lots

of memory when it cannot benefit from it, i.e., when it is doing

scans, and give it a paucity of memory when it could most use it,

i.e., during subproblems.

Concretely, during a scan of size N , which takes N /B I/Os, set

the memory to the fixed size N /B. Repeat recursively. Thus, a bad
profile forMM-Scan on a problem of size N consists of eight recur-

sive bad profiles for N /4 followed by a “square” of size N /B I/Os by

N /B blocks of cache; see Figure 1.
6
This recursion continues down

to squares of sizeΘ(B) blocks7.MM-Scan’s I/O cost with this worst-

case profile is exactly the same as if the memory stayed constant

at its smallest possible value.MM-Scan can perform exactly one

multiply of Θ(
√
N ×
√
N) matrices on this profile.MM-InPlace, on

the other hand, can perform Ω(log N
B) multiplies on this profile [5].

This proves that MM-Scan is not optimal in the cache-adaptive

model.

5
There is an alternate form of the algorithm, MM-InPlace, that immediately adds the

results of elementarymultiplications into the output matrix as they are computed. Since

it needs no linear scan to merge results from sub-problems, it is an (8, 4, 0)-regular
algorithm. Consequently, its I/O complexity in the DAMmodel is alsoO (N 3/2/

√
MB),

but it is optimally cache-adaptive.

6
In the cache-adaptive model, it’s enough to analyze cache-oblivious algorithms only

on square profiles, defined as follows [5]. Whenever the RAM size changes to have

the capacity for x blocks, it stays constant x I/Os before it can change again. This

paper focuses exclusively on cache-oblivious algorithms, so we use square profiles

throughout.

7
We stop at Θ(B) blocks due to the tall-cache requirement of MM-Scan [28]

Figure 1: A bad profile forMM-SCAN as defined recursively.

This worst-case profile exactly tracks the execution of MM-Scan.

From the perspective of the algorithm, the memory profile does
the wrong thing at every time step; whenever MM-Scan cannot use

more memory, it gets the maximum amount possible, and whenever

it can use more memory, that memory gets taken away. This bad

example formatrixmultiplication generalizes to any (a,b, 1)-regular
algorithm. When c < 1, this construction is ineffective—the scans

are simply too small to waste a significant amount of resources.

TheMM-Scan example reveals a fascinating combinatorial as-

pect of divide-and-conquer algorithms. At some points of the ex-

ecution, the I/O performance is sensitive to the size of memory

and sometimes it is almost entirely insensitive. These changes in

memory sensitivity make cache-adaptive analysis nontrivial.

4 TECHNICAL OVERVIEW

Cache-Adaptivity on Randomly Shuffled

Profiles

The main technical result of the paper is that random shuffling of

adversarially constructed box-profiles makes (a,b, c)-regular algo-
rithms where a > b and c = 1 cache-adaptive in expectation. In the

full version of the paper we prove the following:

Theorem 3 (Informal). Consider an (a,b, c)-regular algorithm A,
where a > b (b > 1) are constants in N and c = 1. Let Σ be a prob-
ability distribution over box sizes, and consider a sequence of boxes
(□1,□2,□3, . . .)with sizes drawn independently from the distribution.
ThenA is cache-adaptive (in expectation) on the random sequence of
boxes (□1,□2,□3, . . .).

For simplicity, we discuss here the case where the block size

B = 1, and A has the same values of a,b, c as the not-in-place

naïve matrix-multiplication algorithm,with a = 8 and b = 4 and

c = 1. Moreover, we assume that all box sizes and problem sizes are

powers of 4. Doing so ensures |a − b | ≥ Ω(1), allows us to simplify

many of the expressions in intermediate calculations, and frees us

from tracking factors of B and its added complexity
8
. Additionally,

we consider a simplified model of caching: any box of size s that

8
At a high level, the cache-line analysis works exactly as one would expect for a nice,

recursive algorithm. However, actually getting the probabilistic analysis correct adds

some complication and is resolved through several of the simplification steps in the

full version of the paper. As intuition (a, b, c)-regular algorithms will recurse down

to sizes small enough to fit inside cache lines getting the requisite cache locality.

begins in a subproblem of size s or smaller completes to the end of

the problem of size s containing it (and goes no further); and any

box of size s that begins in the scan of a problem of size greater

than s continues either for the rest of the scan or for s accesses in
the scan, whichever is shorter. As a final simplification, we assume

that each scan in each problem of some size s consists of exactly s
memory accesses. In fact, we show in the full version of the paper

that these simplifications may be made without loss of generality

for arbitrary (a,b, c)-regular algorithms.

Let □ denote a single box drawn from the distribution Σ. The
proof of Theorem 3 begins by applying the Martingale Optional

Stopping Theorem to combinatorially reinterpret what it means

for A to be cache-adaptive in expectation on the random sequence

(□1,□2, . . .). In particular, if f (n) is the expected number of boxes

needed forA to complete a problem of sizen, then cache-adaptivity-
in-expectation reduces to:

f (n) ≤ O(8log4 n)
mn

=
O(nlog4 8)

mn
=

O(n3/2)
mn

, (3)

wheremn = E
[
min(n, |□|)3/2

]
is the average n-bounded poten-

tial of a box.
At the heart of the proof of Theorem 3 is a somewhat unintuitive

combinatorial argument for expressing f (n), the expected number

of boxes needed to complete a problem of size n, in terms of f (n/4).

Lemma 3 (Stated for the simplified assumptions). Define p =
Pr[|□| ≥ n]· f (n/4). Then, the expected number of squares to complete
the subproblems in a problem of sizen is exactly

∑
8

i=1(1−p)i−1 f (n/4),
and the expected number of additional squares needed to complete
the final scan is (1 − Θ(p)) · Θ(n)

E[min(|□ |,n)] .

Proof Sketch. When executing a problem of size n, the first
subproblem requires f (n/4) boxes to complete, on average. Define

q to be the probability the boxes used to complete the first subprob-

lem include a box of size n or larger. Then with probability q, no
additional boxes are required

9
to complete the rest of the problem

of size n. We will show that q = p later in this proof. Otherwise,

an average of f (n/4) additional boxes are needed to complete the

next subproblem of size n/4. Again, with probability q, one of these
boxes completes the rest of the problem in its entirety. Similarly,

9
This is due to the aforementioned simplified caching model.

the probability that the i-th subproblem is completed by a large

box from a previous subproblem is (1 − q)i−1. Thus the expected
number of boxes needed to complete all 8 subproblems is

8∑
i=1
(1 − q)i−1 f (n/4). (4)

Remarkably, the probability q can also be expressed in terms

of f (n/4). Define S to be the random variable for the number of

boxes used to complete the first subproblem of size n/4; define
ℓ ≤ O(n3/2) to be an upper bound for S ; and define X to be the

random variable for the number of the boxes in the subsequence

□1, . . . ,□S that are of size n or greater. The expectation of X can

be expressed as

E [X] =
ℓ∑
i=1

Pr[S ≥ i] · Pr[|□i | ≥ n | S ≥ i].

Since |□i | is independent of |□1 |, . . . , |□i−1 |, we have that Pr[|□i | ≥
n | S ≥ i] = Pr[|□i | ≥ n]. Thus

E [X] = Pr[|□| ≥ n] ·
ℓ∑
i=1

Pr[S ≥ i]

= Pr[|□| ≥ n] · E[S] = Pr[|□| ≥ n] · f (n/4).

Notice, however, that at most one of the boxes □1, . . . ,□S can

have size n or larger (since such a box will immediately complete

the subproblem). Thus X is an indicator variable, meaning that

q = Pr[X ≥ 1] = E[X] = Pr[|□| ≥ n] · f (n/4) = p. So q = p, as
promised. Expanding Equation 4, we get that the expected number

of boxes needed to complete the 8 subproblems is, as desired, at

most

8∑
i=1

(
1 − Pr[|□| ≥ n] · f (n/4)

)i−1
f (n/4) (5)

Next we consider the boxes needed to complete the final scan.

Suppose the scan were to be run on its own. Let K denote the

number of boxes needed to complete it, and let □′
1
, . . . ,□′K denote

those squares.

Rather than consider E[K] directly, we instead consider E[K] ·
E[min(|□|,n)]. Through a combinatorial reinterpretation, we have

E[K] · E[min(|□|,n)] = E[min(|□|,n)] ·
ℓ∑
i=1

Pr[K ≥ i]

=

ℓ∑
i=1

Pr[K ≥ i] · E[min(|□′i |,n) | K ≥ i]

= E

[K∑
i=1

min(|□′i |,n)
]
.

The quantity in the final expectation has the remarkable property

that it is deterministically betweenn and 2n−1. Thus the same can be

said for its expectation, implying that E[K] · E[min(|□|,n)] = Θ(n).
Recall that K is the expected number of boxes to complete the

scan on its own. In our problem, the scan is at the end of a problem,

and thus with probability 1− (1−p)8 = Θ(p), the scan is completed

by a large box from one of the preceding subproblems. Hence

the expected number of additional boxes to complete the scan is

(1 − Θ(p)) · Θ(n)
E[min(|□ |,n)] .

□

Lemma 3 suggests a natural inductive approach to proving The-

orem 3. Rather than explicitly showing that f (n) ≤ O (n3/2)
mn

, one

could instead prove the result by induction, arguing for each n that

f (n)
f (n/4) ≤

n3/2/mn

(n/4)3/2/mn/4
= 8 ·

mn/4
mn
. (6)

One can construct example box-size distributions Σ showing that

the Equation 6 does not always hold, however. In particular, the

scan at the end of a subproblem of size n can make f (n) sufficiently

larger than f (n/4) that Equation 6 is violated. To get around this

problem, one could attempt to instead prove that

f ′(n)
f (n/4) ≤ 8 ·

mn/4
mn
, (7)

where f ′(n) is the expected number of boxes needed to complete

a problem of size n, without performing the final scan at the end.

Unlike Equation 6, Equation 7 does not inductively imply a bound

of the form f (n) ≤ O (n3/2)
mn

, which is necessary for cache-adaptivity

in expectation. If one additionally proves that∏
4
k ≤n

f (4k)
f ′(4k)

≤ O(1), (8)

then Equation 8 could be used to “fill in the holes in the induction”

in order to complete a proof of cache-adaptivity. Equation 8 is some-

what unintuitive in the sense that individual terms in the product

can actually be a positive constant greater than 1. The inequality

states that, even though the scans in an individual subproblem size

could have a significant impact on f (n), the aggregate effect over
all sizes is no more than constant.

To make this semi-inductive proof structure feasible, one addi-

tional insight is necessary. Rather than proving Equation 7 for all

values n, one can instead restrict oneself only to values n such that

f (n) ≥ C · n
3/2

mn
, (9)

where C is an arbitrarily large constant of our choice. In particular,

if n0 is the largest power of 4 less than our problem-size such that

f (n0) < C · n3/2
mn

, then we can use cache-adaptivity within problems

of sizen0 as a base case, and then prove Equation 7 only for problem-

sizes between n0 and n. Similarly, we can restrict the product in

Equation 8 to ignore problem sizes of size smaller than n0.
When Equation 9 holds, Equation 7 can be interpreted as a

negative feedback loop, saying that as we look at problem sizes

n = 1, 4, 16, . . ., whenever f (n) becomes large enough to be on the

cusp of violating cache-adaptivity, there exists downward pressure

(in the form of Equation 7) that prevents it from continuing to grow

in an unmitigated fashion.

The full proof of Theorem 3 takes the structure outlined above.

At its core are the combinatorial arguments used in Lemma 3, which

allow us to recast f (n) and f ′(n) in terms of f (n/4) and f ′(n/4).
When applied in the correct manner, these arguments can be used

to show Equation 7 (assuming Equation 9) with only a few addi-

tional ideas. The proof of Equation 8 ends up being somewhat more

sophisticated, using combinatorial ideas from Lemma 3 in order

to expand each of the terms f (4k)/f ′(4k), and then relying on a

series of subtle cancellation arguments in order to bound the end

product by a constant.

Robustness of Worst-Case Profiles

We consider three natural forms of smoothing on worst-case pro-

files. Remarkably, the worst-case nature of the profiles persists in all

three cases. The canonical worst-case profile is highly structured,

giving the algorithm a larger cache precisely when the algorithm

does not need it. It is tempting to conclude that bad profiles must

remain closely synchronized with the progression of the algorithm.

By exploiting self-symmetry within worst-case profiles as well as

the power of the No-Catchup Lemma, our results establish that this

is not the case. The No-Catchup Lemma, in particular, allows us

to capture the idea of an algorithm resynchronizing with a profile,

even after the profile has been perturbed.

We begin by defining a canonical (a,b, c)-regular algorithm An
on problems of size n, and a corresponding worst-case profileMa,b .

The profileMa,b completes each scan of sizek inA in a single box of

size k , thereby ensuring that every box makes its minimum possible

progress. The profileMa,b is the limit profile of the sequence of
profiles Ma,b (n) for n = 1,b,b2, . . ., constructed recursively by

definingMa,b (n) by concatenating together a copies ofMa,b (n/b)
and then placing a box of size n at the end. The algorithm An
requires the entirety of the profile Ma,b (n) to complete. One can

check inductively that Ma,b (n) has total potential nlogb a · logn,
thereby makingMa,b a worst-case profile.

Box-size perturbations. Consider any probability distribution P
over [0, t] for t ≤

√
n such that for X drawn at random from P,

E[X] = Θ(t). Let X1,X2, . . . be drawn iid from P and defineM to

be the distribution over square profiles obtained by replacing each

box □i inM with a box of size |□i | · Xi . In the full version of the

paper we show that the highly perturbed square profiles inM still

remain worst-case in expectation.

The proof takes two parts. We begin by defining T to be the

smallest power of b greater than t , and considering the profile

T ·Ma,b obtained by multiplying each box’s size by T . Exploiting
self-symmetry in the definition ofMa,b , we are able to reinterpret

T ·Ma,b as the profileMa,b in which all boxes of size smaller thanT
have been removed. Recall thatMa,b (n) denotes the prefix ofMa,b
on which An completes. Using the fact that T ≤

√
n, we prove

that the boxes of size smaller than T contain at most a constant

fraction of the potential in the prefixMa,b (n). On the other hand, by
iterative applications of the No-Catchup Lemma, the removal of the

boxes cannot facilitateA to finish earlier in the profile. Combining

these facts, we establish that T ·Ma,b remains worst-case.

To obtain an element ofM fromT ·Ma,b , one simply multiplies

the size of each box □i inT ·Ma,b by Xi/T , whereT is drawn from

the distribution P. Using that E[Xi/T] = Θ(1) and that nlogb a is

a convex function, Jensen’s inequality tells us that the expected

potential of the new box of size
|□i | ·Xi

T is at least a constant frac-

tion of the original potential. Since the perturbations preserve the

expected potentials of the boxes in T ·Ma,b up to a constant factor,

we can prove that the resulting profile is worst-case in expectation

by demonstrating that the perturbations do not result in An fin-

ishing earlier in T ·Ma,b then it would have otherwise. Since each

perturbation can only reduce the size of a box in T ·Ma,b , this can

be shown by iterative applications of the No-Catchup Lemma.

Start time perturbations.We consider what happens if the mem-

ory profile Ma,b (n) is cyclic-shifted by a random amount. This

corresponds to executing Aa,b (n) starting at a random start-time

in the cyclic version ofMa,b (n). Again, the resulting distribution
of profiles remains worst-case in expectation.

The key insight in the proof is that Ma,b (n) can be expressed

as the concatenation of two profiles A = (□1, . . . ,□x) and B =
(□′

1
, . . . ,□′y) such that

x∑
i=1
|□i | ≥ Ω

(y∑
i=1
|□′i |

)
, (10)

x∑
i=1
|□i |logb a ≤ O

(y∑
i=1
|□′i |

logb a

)
. (11)

Equation 10 establishes that with at least constant probability, a

random selected start-time in the profileMa,b (n) falls in the prefix

A. By a slight variant on the No-Catchup Lemma, if A is executed

starting at that random start-time, it is guaranteed to use all of the

boxes in the suffix B. By Equation 11, however, these boxes contain

a constant fraction of the potential from the original worst-case

profileMa,b (n). Thus, with constant probability the algorithm A
runs at a random start-time that results in a profile that is still

worst-case. This ensures that the randomly shifted profile will be

worst-case in expectation.

Box-order perturbations. The bad profile, Ma,b , is constructed

recursively by making a copies ofMa,b (n/b) followed by a box of

size n. The box comes at the end, intuitively, because all (a,b, 1)-
regular algorithms with upfront scans in each subproblem can

converted to an equivalent (a,b, 1)-regular algorithm, where the

scans in all subproblems are at the end, preceded by a single linear

scan.

We consider a relaxation of the construction of Ma,b . When

constructing Ma,b (n) recursively, rather than always placing a box

of size n after the final instance of Ma,b (n/b), we instead allow

ourselves to place the box of size n after any of the a recursive

instances ofMa,b (n/b) (each of which may no longer be identical

to the others due to the non-determinedness of the new recursive

construction).

Although at first glance moving the largest box in the profile

seems to closely resemble the random shuffling considered in the

full version of the paper, we prove that the resulting distribution

over square profiles again remains worst-case in expectation. In

fact, we can prove a stronger statement: for memory profile M
drawn from the resulting distributionM of square profiles,M is a

worst-case profile with probability one.
To prove this, we begin by constructing what we call auniversal

worst-case profileUa,b . The prefixesUa,b (n) of the profileUa,b are
recursively constructed in the same manner asMa,b , except with

the following twist: rather than concatenating together a copies

Time

S
ize

o
f

m
em

ory

Time

Original

S
ize

of
m

em
ory

Time

S
ize

o
f

m
em

ory

Time

S
ize

of
m

em
ory

t = 0 t = 0

Profile

Box-Size

Perturbation

Start Time

Perturbation

Box-Order

Perturbation

Figure 2: Four square profiles providing an example of the three smoothing transformations explored in the full version of the

paper.Thefirst profile is an example of an original profile. The next three profiles represent respectively: box-size perturbations,
start time perturbations and, box-order perturbations of the Original Profile.

of Ua,b (n/b) with a single box of size n at the end, we instead

concatenate together a copies of Ua,b (n/b) with a box of size n at

the end of each copy. Exploiting self-symmetry in the construction

ofMa,b , we show thatUa,b is also a worst-case profile.

Each square profile in the distributionM can be obtained from

Ua,b by removing a
a−1
a fraction of the boxes fromUa,b . By itera-

tive applications of the No-Catchup Lemma, such removals cannot

facilitate the algorithm Aa,b to finish earlier in the profile than it

would have otherwise. On the other hand, because an
1

a -fraction of

the boxes of each size remain after the removals, the total potential

in each prefixUa,b (n) ofUa,b is affected only by a constant factor

by the removals. Thus all square profiles from the distributionM
is guaranteed to still be worst-case.

5 RELATEDWORK

Modeling the performance of algorithms in the real-world is an

active area of study and has broad implications both theoretically

and for performance engineering. In order to apply our algorithms

to real-world systems, it is important to find the right model in

which the theoretical efficiency of our algorithms closely matches

their practical efficiency.

The disk access model (DAM) was formulated [1, 33] to ac-

count for multi-level memory hierarchies (present in real systems)

where the size of memory available for computation and the speed

of computation differs in each level. The DAM [1] models a 2-level

memory hierarchy with a large (infinite sized) but slow disk, and a

small (bounded byM) but fast cache. The drawback of DAM is that

efficient algorithms developed in this model require knowledge of

cache size. The ideal-cache model [28, 51] was proposed to coun-

teract this drawback by building an automatic paging algorithm

into the model and providing no knowledge of the cache size to

algorithms. Thus, cache-oblivious algorithms [21, 36] are inde-
pendent of the memory parameter and can be applied to complex

multi-level architectures where the size of each memory-level is

unknown. There exists a plethora of previous work on the perfor-

mance analysis and implementations of cache-oblivious algorithms

(on single-core and multi-core machines) [7, 8, 10, 12, 15, 16, 19, 27,

28, 38, 61, 62]. Among other limits [4, 11], one critical limit of the

cache-oblivious model is that it does not account for changing cache-
size. In fact, preliminary experimental studies have shown that two

cache-oblivious algorithms (with the same I/O-complexity) might

in fact perform vastly differently under a changing cache [40].

Changing cache size can stem from a variety of reasons. For

example, shared caches in multi-core environment may allocate

different portions of the cache to different processes at any time

(and this allocation could be independent of the memory needed by

each process). There has been substantial work on paging in shared-

cache environments. For example, Peserico formulated alternative

models for page replacement [50] provided a fluctuating cache.

However, Peserico’s page-replacement model differs from the cache-

adaptive model because in his model, the cache-size changes at

specific locations in the page-request sequence as opposed to being

temporally related to each individual I/O. Other page replacement

policies have applied to multicore shared-cache environments [35]

where several processes share the same cache [2, 32, 34, 41, 42, 63]

leading to situations where page sizes can vary [42] and where an

application can adjust the cache size itself [34, 63].

Theoretical [2, 3] and empirical studies [47, 65, 66] have been

done in the past to study partial aspects of adaptivity to memory

fluctuations [13, 31, 44, 45, 48, 64, 66]. Barve and Vitter [2, 3] were

the first to generalize the DAMmodel to account for changing cache

size. In their model, they provide optimal algorithms for sorting,

matrix multiplication, LU decomposition, FFT, and permutation but

stops just short of a generalized technique for finding algorithms

that are optimal under memory fluctuations [2, 3]. In their model,

the cache is guaranteed to stay at sizeM forM/B I/Os. In this way,

their model is very similar to our notion of square profiles.

The cache-adaptive model [6] introduced the notion of amem-
ory profile. Thememory profile provides the cache size at each time

step (defined as an I/O-operation), and at each time step the cache

can increase by 1 block or decrease by an arbitrary amount. Bender

et al. [5] went on to show that any optimal (in the DAM) (a,b, c)-
regular algorithm where a > b and c < 1 is cache-adaptive or

optimal under this model. However, disappointingly, they showed

that (a,b, c)-regular algorithmswhere c = 1 can be up to a log-factor

away from optimal [5]. This leads to the the question of whether

non-adaptive (a,b, c)-regular algorithms can be turned into cache-

adaptive algorithms via some procedure. Lincoln et al. [40] took the

first step in this direction by introducing a scan-hiding procedure

for turning certain non-adaptive (a,b, c)-regular algorithms into

cache-adaptive ones. Although scan-hiding takes polynomial time,

it introduces too much overhead and also does not apply to all

(a,b, c)-regular algorithms where a > b and c = 1.

This paper takes another important step in this direction by

showing that (a,b, c)-regular algorithms where a > b and c = 1 are
cache-adaptive in expectation. Whereas previous papers analyzed

all algorithms in the worst-case, we believe that this is, in fact,

unnecessary and does not accurately depict real-world architectures.

We introduce the notion of average case cache-adaptivity in what

we hope to be a more accurate picture of shared-cache multi-core

systems.

Acknowledgments

We gratefully acknowledge support from NSF grants: CCF-1439084,

CCF-1533644, CCF-1725543, CSR-1763680, CCF-1716252, CCF-1617618,

CNS-1938709, CNS-1553510.

This research is partially supported by an NSF GRFP fellowship

and Fannie & John Hertz Foundation fellowship. This research is

also supported by the United States Air Force Research Labora-

tory and was accomplished under Cooperative Agreement Number

FA8750-19-2-1000.
10

6 CONCLUSION

This paper presents the first beyond-worst-case analysis of (a,b, c)-
regular cache-adaptive algorithms. The main positive result in this

paper gives hope for cache-adaptivity: even though the worst-case

profile from previous work [5, 6] is robust under random pertur-

bations and shuffling, many (a,b, c)-regular algorithms become

cache-adaptive in expectation on profiles generated from any dis-

tribution. Notably, to our knowledge, all currently known sub-

cubic matrix multiplication algorithms (such as Strassen’s [55],

Vassilevska Williams’ [59], Coppersmith-Winograd’s [20], and Le

Gall’s [39]) were a logarithmic factor away from adaptive under

worst-case analysis, but are adaptive in expectation on random

profiles via smoothed analysis. Our results provide guidance for

analyzing cache-adaptive algorithms on profiles beyond the adver-

sarially constructed worst-case profile.

Cache fluctuations are a fact of life on modern hardware, but

many open questions remain. In this paper, we randomized mem-

ory profiles for deterministic (a,b, c)-regular algorithms. Could

randomized algorithms also overcome worst-case profiles and re-

sult in cache-adaptivity? On the empirical side, which patterns of

memory fluctuations occur in the real world? Further exploration

of beyond-worst-case analysis may help model practical memory

patterns more accurately.

10
The views and conclusions contained in this document are those of the authors

and should not be interpreted as representing the official policies, either expressed

or implied, of the United States Air Force or the U.S. Government. The U.S. Govern-

ment is authorized to reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation herein.

REFERENCES

[1] Alok Aggarwal and S. Vitter, Jeffrey. 1988. The input/output complexity of sorting

and related problems. Commun. ACM 31, 9 (Sept. 1988), 1116–1127.

[2] Rakesh Barve and Jeffrey S. Vitter. 1998. External memory algorithms with dy-
namically changing memory allocations. Technical Report. Duke University.

[3] Rakesh D. Barve and Jeffrey Scott Vitter. 1999. A Theoretical Framework for

Memory-Adaptive Algorithms. In Proc. 40th Annual Symposium on the Foundations
of Computer Science (FOCS). 273–284.

[4] Michael A. Bender, Gerth Stølting Brodal, Rolf Fagerberg, Dongdong Ge, Simai

He, Haodong Hu, John Iacono, and Alejandro López-Ortiz. 2011. The Cost of

Cache-Oblivious Searching. Algorithmica 61, 2 (2011), 463–505.
[5] Michael A. Bender, Erik D. Demaine, Roozbeh Ebrahimi, Jeremy T. Fineman, Rob

Johnson, Andrea Lincoln, Jayson Lynch, and Samuel McCauley. 2016. Cache-

Adaptive Analysis. In Proceedings of the 28th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA). 135–144. https://doi.org/10.1145/2935764.

2935798

[6] Michael A. Bender, Roozbeh Ebrahimi, Jeremy T. Fineman, Golnaz Ghasemiesfeh,

Rob Johnson, and Samuel McCauley. 2014. Cache-adaptive Algorithms. In Proc.
25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (Portland,
Oregon). 958–971.

[7] Michael A. Bender, Martin Farach-Colton, Jeremy T. Fineman, Yonatan R. Fogel,

Bradley C. Kuszmaul, and Jelani Nelson. 2007. Cache-oblivious Streaming B-

trees. In Proc. 19th Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 81–92.

[8] Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul. 2006. Cache-

oblivious string B-trees. In Proc. 25th Annual ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS). 233–242.

[9] Andreas Björklund, Rasmus Pagh, Virginia Vassilevska Williams, and Uri Zwick.

2014. Listing triangles. In International Colloquium on Automata, Languages, and
Programming. Springer, 223–234.

[10] Guy E Blelloch, Rezaul A Chowdhury, Phillip B Gibbons, Vijaya Ramachandran,

Shimin Chen, and Michael Kozuch. 2008. Provably good multicore cache per-

formance for divide-and-conquer algorithms. In Proc. 19th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). Society for Industrial and Applied

Mathematics, 501–510.

[11] Gerth Stølting Brodal and Rolf Fagerberg. 2003. On the limits of cache-

obliviousness. In Proc. 35th Annual ACM Symposium on Theory of Computing
(STOC) (San Diego, CA, USA). New York, NY, USA, 307–315.

[12] Gerth Stølting Brodal, Rolf Fagerberg, and Kristoffer Vinther. 2007. Engineering

a cache-oblivious sorting algorithm. ACM Journal of Experimental Algorithmics
12 (2007).

[13] Kurt P Brown, Michael James Carey, and Miron Livny. 1993. Managing memory

to meet multiclass workload response time goals. In Proc. 19th International
Conference on Very Large Data Bases (VLDB). Institute of Electrical & Electronics

Engineers (IEEE), 328–328.

[14] Jichuan Chang and Gurindar S Sohi. 2006. Cooperative caching for chip multipro-
cessors. Vol. 34.

[15] Rezaul Chowdhury, Muhibur Rasheed, Donald Keidel, Maysam Moussalem,

Arthur Olson, Michel Sanner, and Chandrajit Bajaj. 2013. Protein-Protein Docking

with F2Dock 2.0 and GB-Rerank. PLoS ONE 8, 3 (2013).

[16] Rezaul Alam Chowdhury, Hai-Son Le, and Vijaya Ramachandran. 2010. Cache-

Oblivious Dynamic Programming for Bioinformatics. IEEE/ACM Trans. Comput.
Biology Bioinform. 7, 3 (2010), 495–510.

[17] Rezaul Alam Chowdhury and Vijaya Ramachandran. 2006. Cache-oblivious

dynamic programming. In Proc. 17th annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 591–600.

[18] Rezaul Alam Chowdhury and Vijaya Ramachandran. 2010. The cache-oblivious

gaussian elimination paradigm: theoretical framework, parallelization and exper-

imental evaluation. Theory of Computing Systems 47, 4 (2010), 878–919.
[19] R Cole and V Ramachandran. 2010. Efficient resource oblivious scheduling of

multicore algorithms. manuscript.

[20] Don Coppersmith and Shmuel Winograd. 1990. Matrix multiplication via arith-

metic progressions. Journal of symbolic computation 9, 3 (1990), 251–280.

[21] Erik D. Demaine. 2002. Cache-Oblivious Algorithms and Data Structures. (2002).

Lecture Notes from the EEF Summer School on Massive Data Sets.

[22] Erik D. Demaine, Andrea Lincoln, Quanquan C. Liu, Jayson Lynch, and Vir-

ginia Vassilevska Williams. 2018. Fine-grained I/O Complexity via Reductions:

New Lower Bounds, Faster Algorithms, and a Time Hierarchy. In 9th Innova-
tions in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018,
Cambridge, MA, USA. 34:1–34:23. https://doi.org/10.4230/LIPIcs.ITCS.2018.34

[23] Peter J Denning. 1968. Thrashing: Its causes and prevention. In Proceedings of
the December 9-11, 1968, fall joint computer conference, part I. 915–922.

[24] Peter J. Denning. 1980. Working sets past and present. IEEE Transactions on
Software Engineering 1 (1980), 64–84.

[25] Dave Dice, Virendra J. Marathe, and Nir Shavit. 2014. Brief Announcement:

Persistent Unfairness Arising from Cache Residency Imbalance. In 26th ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’14, Prague, Czech

Republic - June 23 - 25, 2014. 82–83. https://doi.org/10.1145/2612669.2612703

[26] David Durfee, John Peebles, Richard Peng, and Anup B. Rao. 2017. Determinant-

Preserving Sparsification of SDDM Matrices with Applications to Counting and

Sampling Spanning Trees. In FOCS. IEEE Computer Society, 926–937.

[27] Matteo Frigo and Steven G Johnson. 2005. The design and implementation of

FFTW3. Proc. IEEE 93, 2 (2005), 216–231.

[28] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.

1999. Cache-Oblivious Algorithms. In Proc. 40th Annual Symposium on the
Foundations of Computer Science (FOCS). 285–298.

[29] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.

2012. Cache-Oblivious Algorithms. ACM Transactions on Algorithms 8, 1 (2012),
4.

[30] Matteo Frigo and Volker Strumpen. 2005. Cache-oblivious stencil computations.

Citeseer.

[31] Goetz Graefe. 2013. A New Memory-Adaptive External Merge Sort. Private

communication.

[32] Avinatan Hassidim. 2010. Cache Replacement Policies for Multicore Processors.

In Proc. 1st Annual Symposium on Innovations in Computer Science (ICS). 501–509.
[33] Jia-Wei Hong and H. T. Kung. 1981. I/O complexity: The red-blue pebble game.

In Proc. 13th Annual ACM Symposium on the Theory of Computation (STOC).
326–333.

[34] Sandy Irani. 1997. Page Replacement with Multi-Size Pages and Applications to

Web Caching. In Proc. 29th Annual ACM Symposium on the Theory of Computing
(STOC). 701–710.

[35] Anil Kumar Katti and Vijaya Ramachandran. 2012. Competitive Cache Replace-

ment Strategies for Shared Cache Environments. In Proc. 26th International Par-
allel and Distributed Processing Symposium (IPDPS) (IPDPS ’12). 215–226.

[36] P. Kumar. 2003. Cache Oblivious Algorithms. (2003), 193–212. http://link.

springer.de/link/service/series/0558/tocs/t2625.htm

[37] Rasmus Kyng and Sushant Sachdeva. 2016. Approximate Gaussian Elimination for

Laplacians - Fast, Sparse, and Simple. In FOCS. IEEE Computer Society, 573–582.

[38] R.E. Ladner, R. Fortna, and B.-H. Nguyen. 2002. A Comparison of Cache Aware

and Cache Oblivious Static Search Trees Using Program Instrumentation. Exper-
imental Algorithmics (2002), 78–92.

[39] François Le Gall. 2014. Powers of tensors and fast matrix multiplication. In

Proceedings of the 39th International Symposium on Symbolic and Algebraic Com-
putation. 296–303.

[40] Andrea Lincoln, Quanquan C. Liu, Jayson Lynch, and Helen Xu. 2018. Cache-

Adaptive Exploration: Experimental Results and Scan-Hiding for Adaptivity. In

Proc. 30th on Symposium on Parallelism in Algorithms and Architectures (SPAA).
213–222. https://doi.org/10.1145/3210377.3210382

[41] Alejandro López-Ortiz and Alejandro Salinger. 2012. Minimizing Cache Usage in

Paging. In Proc. 10th Workshop on Approximation and Online Algorithms (WAOA).
[42] Alejandro López-Ortiz and Alejandro Salinger. 2012. Paging for multi-core shared

caches. In Proc. Innovations in Theoretical Computer Science (ITCS). 113–127.
[43] Paul Menage. [n.d.]. CGROUPS. https://www.kernel.org/doc/Documentation/

cgroup-v1/cgroups.txt

[44] Richard TranMills. 2004. Dynamic adaptation to CPU andmemory load in scientific
applications. Ph.D. Dissertation. The College of William and Mary.

[45] Richard T Mills, Andreas Stathopoulos, and Dimitrios S Nikolopoulos. 2004.

Adapting to memory pressure from within scientific applications on multipro-

grammed COWs. In Proc. 8th International Parallel and Distributed Processing
Symposium (IPDPS). 71.

[46] Khang T Nguyen. [n.d.]. Introduction to Cache Allocation Technology in the

Intel Xeon Processor E5 v4 Family. https://software.intel.com/en-us/articles/

introduction-to-cache-allocation-technology

[47] HweeHwa Pang, Michael J. Carey, and Miron Livny. 1993. Memory-Adaptive

External Sorting. In Proc. 19th International Conference on Very Large Data Bases
(VLDB). Morgan Kaufmann, 618–629.

[48] HweeHwa Pang, Michael J Carey, and Miron Livny. 1993. Partially Preemptible

Hash Joins. In Proc. 5th ACM SIGMOD International Conference on Management
of Data (COMAD). 59.

[49] J-S Park, Michael Penner, and Viktor K Prasanna. 2004. Optimizing graph al-

gorithms for improved cache performance. IEEE Transactions on Parallel and
Distributed Systems 15, 9 (2004), 769–782.

[50] Enoch Peserico. 2013. Pagingwith dynamicmemory capacity. CoRR abs/1304.6007

(2013).

[51] H. Prokop. 1999. Cache Oblivious Algorithms. Master’s thesis. Department of

Electrical Engineering and Computer Science, Massachusetts Institute of Tech-

nology.

[52] Aaron Schild, Satish Rao, and Nikhil Srivastava. 2018. Localization of Electrical

Flows. In SODA. SIAM, 1577–1584.

[53] Raimund Seidel. 1995. On the all-pairs-shortest-path problem in unweighted

undirected graphs. Journal of computer and system sciences 51, 3 (1995), 400–403.
[54] Avi Shoshan and Uri Zwick. 1999. All pairs shortest paths in undirected graphs

with integer weights. In 40th Annual Symposium on Foundations of Computer
Science (Cat. No. 99CB37039). 605–614.

https://doi.org/10.1145/2935764.2935798
https://doi.org/10.1145/2935764.2935798
https://doi.org/10.4230/LIPIcs.ITCS.2018.34
https://doi.org/10.1145/2612669.2612703
http://link.springer.de/link/service/series/0558/tocs/t2625.htm
http://link.springer.de/link/service/series/0558/tocs/t2625.htm
https://doi.org/10.1145/3210377.3210382
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology

[55] Volker Strassen. 1969. Gaussian elimination is not optimal. Numerische mathe-
matik 13, 4 (1969), 354–356.

[56] Yuan Tang, Rezaul Alam Chowdhury, Bradley C. Kuszmaul, Chi-Keung Luk, and

Charles E. Leiserson. 2011. The pochoir stencil compiler. In SPAA. 117–128.
[57] Jue Wang, Xiangyu Dong, Yuan Xie, and Norman P Jouppi. 2014. Endurance-

aware cache line management for non-volatile caches. ACM Transactions on
Architecture and Code Optimization (TACO) 11, 1 (2014), 4.

[58] David Williams. 1991. Probability with martingales. Cambridge University Press.

[59] Virginia Vassilevska Williams. 2012. Multiplying matrices faster than

Coppersmith-Winograd. In In Proc. 44th ACM Symposium on Theory of Com-
putation. Citeseer.

[60] Virginia Vassilevska Williams and Ryan Williams. 2010. Subcubic equivalences

between path, matrix and triangle problems. In 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science. 645–654.

[61] Sung-Eui Yoon, Peter Lindstrom, Valerio Pascucci, and Dinesh Manocha. 2005.

Cache-oblivious mesh layouts. 24, 3 (2005), 886–893.

[62] Kamen Yotov, Tom Roeder, Keshav Pingali, John Gunnels, and Fred Gustavson.

2007. An experimental comparison of cache-oblivious and cache-conscious

programs. In Proc. 19th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA). 93–104.

[63] Neal E. Young. 2002. On-Line File Caching. Algorithmica 33, 3 (2002), 371–383.
[64] Hansjörg Zeller and JimGray. 1990. An adaptive hash join algorithm for multiuser

environments. In Proc. 16th International Conference on Very Large Data Bases
(VLDB). 186–197.

[65] Weiye Zhang and Per-Äke Larson. 1996. A memory-adaptive sort (MASORT) for

database systems. In Proc. 6th International Conference of the Centre for Advanced
Studies on Collaborative research (CASCON) (Toronto, Ontario, Canada). IBM
Press, 41–.

[66] Weiye Zhang and Per-Äke Larson. 1997. Dynamic Memory Adjustment for

External Mergesort. In Proc. 23rd International Conference on Very Large Data
Bases (VLDB). Morgan Kaufmann Publishers Inc., 376–385.

[67] Uri Zwick. 1998. All pairs shortest paths in weighted directed graphs-exact and

almost exact algorithms. In Proceedings 39th Annual Symposium on Foundations
of Computer Science (Cat. No. 98CB36280). 310–319.

Appendix

A CACHE-ADAPTIVITY OF RANDOMLY

SHUFFLED PROFILES

Consider an (a,b, c)-regular algorithm, where a > b are constants

in N and 0 < c ≤ 1. Let Σ be a probability distribution over box

sizes, and consider a sequence of boxes (□1,□2,□3, . . .) with sizes

drawn independently from the distribution Σ. (Note that each |□i |
is a random variable.) The goal of this section will be to prove that

for any such algorithm, and for any distribution of box sizes Σ, the
algorithm will be cache-adaptive (in expectation) on the random

sequence of boxes (□1,□2, . . .).

Remark 3. Theorem 1 does not hold in the case of a = b. Consider,
for example, the case of a = b = 2 and c = 1 (e.g., mergesort) with
block size B = 1. Moreover, suppose each scan in each problem of size
s occurs at the end of the problem, and consists of exactly s distinct
block accesses, one after another. Finally, suppose Σ contains only one
box-size

√
n.

Then the potential of a box isO(
√
n), since each subproblem of size

Θ(
√
n) contains Θ(

√
n) recursive leaves. In order for cache-adaptivity

to be achieved, it follows that Sn (which is deterministically deter-
mined since there is only one box-size) must be O(

√
n), that way

Sn · Θ(
√
n) will be within a constant factor of the total progress n to

be made for the full problem. However, every scan of size s ≥ 2

√
n

requires Ω(s/
√
n) boxes devoted entirely to that scan in order to be

completed. Since the sum of the sizes of the scans at each level of
recursion is n, it follows that the sum of the sizes of all scans of size
at least 2

√
n is Θ(n logn). Hence the total number of boxes required

is at least

Sn ≥ Ω(n logn) · 1

√
n
= Ω(
√
n logn),

meaning the algorithm is not cache-adaptive in expectation.

Before continuing, we introduce some notation. Throughout the

section, let □ denote a single box whose size is drawn from the

distribution Σ. As a convention, we will use Sn to denote the index

of the final box □Sn required for the algorithm to complete on an

input of size n (in blocks). (If different inputs to problems of size

n require different numbers of boxes, then we define Sn to be the

maximum over all possible inputs.) The quantity Sn is sometimes

also referred to as the stopping time.
For each problem-sizen, define thework functionWn = n

logb a ,

the number of base-case recursive leaves in a problem of size n.
We define the n-bounded potential mn (s) of a box of size s to
be min(Wn ,Ws), corresponding (up to a constant factor) with the

size of the largest subproblem that the box can complete within

a problem of size n. We will also sometimes use mn to denote

E[mn (|□|)].
With this notation, cache-adaptivity in expectation reduces to

the statement

E

Sn∑
i=1

mn (|□i |)
 ≤ O(Wn).

The remainder of the section is devoted to proving Theorem 1.

In Appendix A.1, we reduce the proof of Theorem 1 to a simpler,

more specialized version of the theorem. The specialized version of

the theorem is then proven in Appendix A.2.

A.1 A Simplified Problem

In this section, we present a series of simplifications to the problem

of proving Theorem 1. Each simplification builds on the prior ones.

Recall that the algorithm A is cache-adaptive in expectation if,

for all problem sizes n,

E

Sn∑
i=1

mn (|□i |)
 ≤ O(Wn). (12)

We begin with a lemma that provides a simpler formulation of

the quantity on the left side of Equation 12.

Lemma 4. For any box-size distribution Σ, and any (a,b, c)-regular
algorithm A,

E

Sn∑
i=1

mn (|□i |)
 = E[Sn] ·mn .

The lemma follows immediately from a specialized variant of

the Martingale Optional Stopping Theorem [58]. We include the

proofs of Lemma 4 and Theorem 4 in Appendix D.

Theorem 4 (Martingale Optional Stopping Theorem [58]). Let
X1,X2, . . . be iid random variables, and let γ be a function such that
γ (Xi) has finite mean µ. Consider an arbitrary process that runs in
steps, and at each step i is given the value of Xi . Suppose that the
process terminates after no more than C steps for some value C . Let S
be the random variable denoting the number of steps that the process
runs. Then,

E

[S∑
i=1

γ (Xi)
]
= E[S] · µ .

This brings us to our first simplification:

Simplification 1. To prove cache-adaptivity on a problem of size n,
it suffices to show that

E[Sn] ≤ O

(
Wn
mn

)
.

Our second simplification ▷ , which is a consequence

of Lemma 11 in Appendix F, has to do with the structure of scans

within subproblems:

Simplification 2. We may restrict ourselves to (a,b, c)-regular al-
gorithms in which scans occur exclusively at the end of subproblems
(rather than before or between recursions), with the exception of the
largest subproblem, which may also perform scan work at the begin-
ning of the algorithm.

We will refer to the scan work at the beginning of the algorithm,

due to the largest problem, as the upfront scan. As a convention,
when we refer to the scan in a given subproblem, we will by default

always be referring to the scan at the end of the subproblem, and

not including the upfront scan, even if the subproblem we are

discussing is the full problem on which the algorithm is running.

The next observation has to do with what we call the hard-

stopping rule, which can be applied to any (a,b, c)-regular algo-
rithm A satisfying the property from Simplification 2 (that scans

appear at the ends of subproblems, with the exception of an upfront

scan). Let q ∈ O(1) be the smallest positive power of b (depending

on the(a,b, c)-regular algorithm A) such that any subproblem of

any size s (ignoring any upfront scan) accesses at most q · s distinct
blocks, such that the scan at the end of any subproblem of any size

s can be completed by any sequence of boxes (with sizes sufficiently

large in Ω(1)) whose sizes sum to at least q · s , and such that the

upfront scan in any problem of any size n can also be completed by

any such sequence of boxes. Notice that this implies that any box

of size qs or larger can complete any subproblem of size s (ignoring
the upfront scan). The hard-stopping rule is a modification to the

manner in which the algorithm A is executed on a problem of size

n:

• The upfront scan is simulated as being of length exactly q ·n.
The upfront scan is complete after l boxes for the smallest

l such that

∑l
i=1 |□i | ≥ q · n. The l-th box is not allowed to

continue past the upfront scan (i.e., the box is not allowed

to perform any additional memory accesses after the scan),

and the (l + 1)-th box begins immediately after the upfront

scan.

• Once the upfront scan is complete, whenever a box of some

size t is generated within a subproblem of size
t
q or smaller,

the box continues to the end of the largest subproblem of

size
t
q or smaller that contains the box. The box stops at

the end of that subproblem (i.e., the next subproblem begins

using the next box).

• Finally, scans at the end of subproblems of each size s are
simulated to always be of length q ·s . In particular, if the scan
is not completed by some box of size qs or larger (possibly
generated within the scan), then the scan requires a sequence

of boxes whose sizes sum to q · s or larger in order for the

scan to complete. The final of these boxes stops at the end

of the scan, and the next box generated then starts at the

beginning of whatever follows the scan.

As permitted by Theorem 1, we will assume that boxes have sizes

large enough in Ω(1) that whenever their sizes sum to q ·s , they can
complete any scan in a problem of size s (or an upfront scan in a

problem of size s). We will also assume, in general, that every box in

the distribution Σ has size large enough to complete any base-case

problem while following the hard-stopping rule. (That is, if the

largest size a base-case problem can be is n0, then every box has

size at least q · n0.). Thus every time a box is drawn, its behavior is

guaranteed to be covered by one of the cases described above. Note

that these assumptions on box sizes, which we will call the base-
box-size assumption, is permitted by the statement of Theorem

1, which allows us to require box sizes be at least arbitrarily large

constants.

The hard-stopping rule has a number of appealing properties.

The number of squares needed to complete a given algorithm on a

problem of size n becomes a function of n only (and is unaffected

by the algorithm input). Moreover, boxes always either complete

some subproblem in its entirety, or finish in the same scan in which

they began.

Note that the hard-stopping rule, in general, only inhibits the

work completed in a box. In particular, any box of size s is always
capable of completing any subproblem of size s/q or smaller, and

any sequence of boxes (with sizes sufficiently large in Ω(1)) whose
sizes sum to q · s or larger are always capable to completing a

scan of size s . Thus the hard-stopping rule is a modification of the

execution of the algorithm such that boxes are sometimes asked to

complete before they would normally need to.

Intuitively, when an execution follows the hard-stopping rule,

the number of boxes for the algorithm to complete cannot decrease.

This can be formalized by repeated applications of the No-Catchup

Lemma (Lemma 2). In particular, each time that a box terminates

early, rather than continuing, the No-Catchup Lemma tells us that

the number of additional boxes needed to complete the problem

(without following the hard-stopping rule) cannot decrease.

We use Shn as the random variable denoting the number of boxes

needed to complete a problem of size n, given that the execution

is following the hard-stopping rule. The key observation is that

Shn ≥ Sn . This brings us to our fifth simplification:

Simplification 3. In order to prove that E[Sn] ≤ O(Wn/mn), it
suffices to prove that E[Shn] ≤ O(Wn/mn), while making the base-
box-size assumption.

In our next simplification, we exploit the hard-stopping rule in

order to remove upfront scans from the problem. In particular, con-

sider an (a,b, c)-regular algorithm A on a problem of size n with

scans only at the ends of subproblems, and one upfront scan at the

beginning of the full problem. (Moreover, suppose A satisfies the

base-box-size assumption when executed with the hard-stopping

rule.) When bounding E[Sn], we may assume without loss of gener-

ality that, inA, the final scan at the end of the full problem contains

as a suffix a copy of the upfront scan (since appending the upfront

scan to the final scan can only increase E[Sn]). Moreover, rather

then bounding E[Sn], Simplification 3 allows us to instead focus on

bounding E[Shn] for A. Let B be the same algorithm except with

the scan at the front ofA removed. (Notice that the value q used for
B when following the hard-stopping rule will be the same as the

value used for A.) Any sequence of boxes which would complete

B while following the hard-stopping rule would also complete the

scan at the upfront ofA. (Indeed, even the boxes that complete the

final scan in B suffice to complete the upfront scan of A.) Thus if

Shn denotes the number of boxes to complete B while following the

hard-stopping rule, then the expected number of boxes to complete

the upfront scan in A (while following the hard-stopping rule) is

at most E[Shn]. The expected total number of boxes to complete

A (while following the hard stopping rule) is therefore at most

2E[Shn]. This brings us to our next simplification, which extends

Simplification 3:

Simplification 4. In order to prove that E[Sn] ≤ O(Wn/mn) (i.e.,
prove Theorem 1), it suffices to consider only algorithms in which all
scans (including those in the largest subproblem) occur exclusively
at the end of their respective subproblems, and to then prove that
E[Shn] ≤ O(Wn/mn), while making the base-box-size assumption.

Our next simplification is that we may restrict ourselves to prob-

lem sizes n which are powers of b. In particular, for any algorithm

A run on a problem of size n that is not a power of b, we can define

r < b such that n · r is a power of b, and then define B to be the

same algorithm except with the problem size of B formally defined

to be r times the corresponding problem size in A.
11

The value of

Shn for A is the same as the values of Shnr for B, and the values of

mn andWn forA are within a constant factor of the values ofmnr ,

andWnr for B. Thus if we prove that E[Shnr] ≤ O(Wnr /mnr) for
B, then we will have proven that E[Shn] ≤ O(Wn/mn) for A.

Simplification 5. Wemay further assume without loss of generality
that all problem sizes are powers of b.

It will be convenient for the value q used in the hard-stopping

rule to always be q = 1. Next we show that this may be assumed

without loss of generality. Consider a (a,b, c)-regular algorithm A,

with scans only at the ends of subproblems, which is executed on

a problem of size n using the hard-stopping rule with some value

q = t and using some sequence of box-sizes (S1, S2, . . .) satisfying
the base-box-size assumption.

Then consider an (a,b, c)-regular algorithm A ′ which is exe-

cuted on a problem of size nt using the hard-stopping rule with

q = 1, and with base-case problem-size one. (Note that because q is

always a power of b, multiplying n by q does not change whether

n is a power of b.) The key insight is that, due to the hard-stopping

rule, a given box will interact with problems of size s in the execu-

tion of A, in precisely the same way that the same box interacts

with problems of size s · t in the the execution of A ′. Hence the
number of boxes used to complete the second execution will be

precisely equal to the number used to complete the first.

Now let Σ be a distribution of box sizes satisfying the base-

box-size assumption for A. Suppose that Shnt ≤ O(Wnt /mnt) for
algorithm A ′ on distribution Σ. Since t ∈ O(1), and since Shnt for
A ′ equals Shn forA, it follows that Shn ≤ O(Wn/mn) for algorithm
A on distribution Σ. Hence we have the following simplification:

Simplification 6. Wemay further assume without loss of generality
that q = 1. Additionally, we may assume that the base-case problem
size is 1.

For the rest of the section, since q = 1, we will adapt the conven-

tion of saying that the size of a scan is simply the same as the size

of the subproblem it is in (i.e., the size of a scan in a subproblem of

size l is simply l).
Simplifications 5 and 6 combine to give us one final simplifica-

tion: that without loss of generality, all box sizes are powers of b.
In particular, since the problem sizes are powers of b, and since

q = 1, the hard-stopping rule does not distinguish between boxes

of different sizes in the range [br ,br+1). Rounding each box size

down to the nearest power of b changesmn by at most a constant

factor and does not change E[Shn] orWn . Thus we get our final

simplification:

Simplification 7. Wemay further assume without loss of generality
that all box sizes are powers of b.

In light of Simplifications 6 and 7, the hard-stopping rule has

a very simple interpretation: any box of size s which is started in

11
Note that B’s base case for recursion happens on problems r times as large as in

A. This is acceptable since r ≤ O (1). Also note that if a distribution Σ of box-sizes

for A satisfies the base-box-size assumption, then so will the same distribution for B,
since the base-case problems in both algorithms use the same block-access patterns.

a problem of size s or smaller continues to the end of whatever

problem of size s it’s in; and a box of size s started in the scan of

size l > s finishes within the same scan, and completes the scan if

and only if the sum of the sizes of the boxes started within the scan

sum to l or greater.
Combining these simplifications, we get that in order to prove

Theorem 1, it suffices to prove the following specialized version:

Theorem 5. Let a > b be constants in N and consider c ∈ [0, 1].
Consider an (a,b, c)-regular algorithm A, in which all scans occur
exclusively at the ends of subproblems, and suppose A is executed
with the hard-stopping rule using q = 1. Then for any problem size n
that is a power of b, and for any box-size distribution Σ in which all
boxes have sizes that are powers of b,

E[Shn] ≤ O(Wn/mn).

The remainder of the section is devoted to proving Theorem 5.

A.2 Proof of Theorem 5

We begin by introducing some additional notation. Let f (n) denote
E[Shn], the expected number of boxes needed to complete a problem

of size n (while following the hard-stopping rule). Note that f (n)
is well defined since the number of boxes needed to complete a

problem while following the hard-stopping rule is a function of n
only. In order to prove cache-adaptivity for problems of size n, we
wish to prove that

f (n) ≤ O(Wn/mn). (13)

(Recall thatWn is the work function, satisfyingWn = nlogb a , and
mn is the expectation of the n-bounded potential function, satisfy-

ingmn = E[min(Wn ,W |□ |)], where □ is a box of size drawn from

the distribution Σ.)
Intuitively, Equation 13 says that the typical progress of a box

ismn , allowing for roughlyWn/mn boxes to complete the problem,

on average. Formally, we say that the typical progress of a box is
given by

ϕ(n) =Wn/f (n),
the amount of work in a problem of size n divided by the average

number of boxes needed. In order to prove cache-adaptivity in

expectation, we therefore wish to show that

ϕ(n) ≥ Ω(mn),

for all problem sizes n.
A natural approach might be to prove this by induction on n.

(Recall that the eligible problem sizes n are the powers of b.) In
particular, it would suffice to prove the relationship

ϕ(n)
ϕ(n/b) ≥

mn
mn/b

. (14)

Unfortunately, Equation 14 does not always hold, as shown in

the following example.

Example 1. Suppose that the box sizes |□| take some value l deter-
ministically. Then the expected number of boxes f (l) to complete a
problem of size l will be one. But the expected number of boxes f (b · l)
to complete a problem of size b · l will be a + b. In particular, a boxes

are used to solve the a subproblems, and b boxes are used for the scan.
This means that ϕ(l · b)/ϕ(l) will be

ϕ(l · b)
ϕ(l) =

Wlb/f (lb)
Wl /f (l)

=
Wlb
Wl
· f (l)
f (lb) = a · 1

a + b
< 1.

Note that in the final inequality we use the useful fact that Wlb
Wl
=

(lb)logb a

l logb a = a.
On the other hand,ml andmlb will both beWl (since all boxes

are size l), meaning that mlb
ml
= 1, and thereby violating Equation 14.

The reason for the violation is intuitively that the long scan in the
problem of size b · l causes the typical progress of a box to shrink
(when compared to a problem of size b), while the average bounded
potential is left unchanged.

The next lemma shows that Example 1 is extremal in the sense

that one will always have
ϕ(l ·b)
ϕ(l) ≥

a
a+b .

Lemma 5. For all problem sizes l , f (l ·b)
f (l) ≤ a + b. Consequently,

ϕ(l ·b)
ϕ(l) =

Wlb /f (lb)
Wl /f (l) ≥

a
a+b .

Proof. Note that the expected number of boxes needed to com-

plete a subproblems of size l is at most a · f (l). Moreover, a scan of

size b · l can require at most b times as many boxes to complete (in

expectation) as does a scan of size l . Since a subproblem of size l
contains a scan of size l , it follows that a scan of size b · l requires
at most b · f (l) boxes to complete (in expectation).

12
In total, we

get that f (l · b) ≤ af (l) + b f (l), as desired. □

To resolve the issue in Example 1, one can separate the analysis

of each scan from the analysis of the subproblems preceding the

scan. Define f ′(n) to be the expected number of boxes needed to

complete a problems of size n/b one after another. (i.e., f ′(n) is the
expected number of boxes to complete a problem of size n, while
ignoring the final scan.) Similarly, define ϕ ′(n) =Wn/f ′(n). Rather
than proving Equation 14, which Example 1 proves false, one could

instead attempt to show that

ϕ ′(n)
ϕ(n/b) ≥

mn
mn/b

. (15)

Then, rather than individually considering ϕ(n)/ϕ ′(n) for each
problem size n, one could instead bound the total impact of scans

across all problem sizes on the typical progress function, proving

that ∏
bt ≤n

ϕ(bt)/ϕ ′(bt) ≥ Ω(1). (16)

In particular, the goal would be to prove that, although the scans

at any particular level of recursion can bring down the typical

progress of a box by as much as a constant factor, in aggregate the

scans across all levels of recursion bring the typical progress of a

box down by no more than a constant factor.

Combined, Equation 15 and Equation 16 would suffice for prov-

ing cache adaptivity in expectation. (In particular, when combined,

they imply that ϕ(n) ≥ Ω(mn).) The approach we take differs from

12
Here we are implicitly using the fact that for any sequence of boxes, the hard-

stopping rule allows to complete a problem of size l , the hard-stopping rule would

have also allowed them to complete a single scan of size l .

this in one additional important way. Rather than proving Equa-

tion 15 for all n (that are powers of b), we instead restrict ourselves

to values of n for which ϕ(n/b) is on the cusp of being too small

for cache adaptivity (meaning ϕ(n/b)/mn/b is a sufficiently small

constant). For these values, Equation 15 can be viewed as a sort of

negative feedback loop, showing that whenever ϕ(n)/mn starts to

become small, there is upward pressure so that ϕ ′(n · b)/mn ·b does

not become even smaller. Formally, we will prove the following

propositions, the proofs of which we will present in the coming

subsections.

Proposition 1. Consider a problem size l > b, and suppose l/b
satisfies ϕ(l/b) < ml/b

4a . Then,

ϕ ′(l)
ϕ(l/b) ≥

ml
ml/b

.

Proposition 2. Consider the largest problem size l ≤ n for which
ϕ(l) ≥ ml

4a . Then, ∏
l<bt ≤n

ϕ(bt)/ϕ ′(bt) ≥ Ω(1).

In fact, we will not need Proposition 2 in its full strength. Rather,

we will use the nearly equivalent fact that∏
b ·l<bt ≤n

ϕ(bt)/ϕ ′(bt) ≥ Ω(1),

which is implied by Proposition 2 and the observation that ϕ(b ·
l)/ϕ ′(b · l) ≤ 1. Assuming the propositions, Theorem 5 can be

proven as follows.

Proof of Theorem 5. Suppose we wish to prove cache adap-

tivity on problems of size n. Consider the largest subproblem size

l for which ϕ(l) ≥ ml
4a . (Note that l = 1 necessarily satisfies this

property since ϕ(1) = W1/f (1) = 1 and
m1

4a =
1

4a .) If l = n, then
ϕ(n) ≥ Ω(mn), which proves cache adaptivity. On the other hand,

if l < n, then we can express ϕ(n) as

ϕ(n) = ϕ(b · l) ·
∏

b ·l<bt ≤n

ϕ ′(bt)
ϕ(bt−1)

· ϕ(b
t)

ϕ ′(bt) .

By Proposition 1 (which holds for all problem sizes greater than

b · l) and Proposition 2, this becomes

ϕ(n) ≥ Ω

(
ϕ(b · l) ·

∏
b ·l<bt ≤n

mbt

mbt−1

)
= Ω

(
ϕ(b · l) · mn

mb ·l

)
.

Recall that our goal is to establish that the typical progress ϕ(n)
is at least Ω(mn), the average n-bounded potential of a box. To com-

plete the proof, it therefore suffices to show that ϕ(b · l) ≥ Ω(mbl).
Recall that, by the definition of l , ϕ(l) = Wl

f (l) ≥
ml
4a , meaning that

f (l) ≤ 4a ·Wl /ml . SinceWbl = a ·Wl , and since mbl ≤ a ·ml
(in particular, min(W |□ | ,Wl) ≤ a · min(W |□ | ,Wbl)), it follows that
f (l) ≤ 4a ·Wlb/mlb . By Lemma 5, we then get that f (l · b) ≤
(a + b) · 4a ·Wbl /mbl , and thus ϕ(bl) ≥ mbl

4a ·(a+b) ≥ Ω(mbl), as
desired. □

Name Symbol Expansion

work function Wn nloga b

n-bounded potential mn E[min(Wn ,W |□ |)]
expected stopping time f (n) –

expected stopping time ignoring final scan f ′(n) –

typical progress ϕ(n) Wn/f (n)
typical progress ignoring final scan ϕ ′(n) Wn/f ′(n)

Figure 3: A reference table of the functions used to analyze cache-adaptivity in expectation.

The remainder of the section is devoted to proving Propositions

1 and 2. For reference by the reader, Figure 3 gives a table of the

functions defined in this section that continue to be used in the

proofs of the propositions.

A.2.1 Proof of Proposition 1. We begin by comparing the average

l-bounded potentialml to the average l/b-bounded potentialml/b ,

assuming ϕ(l/b) < ml/b
4a .

Lemma 6. Suppose l/b satisfies ϕ(l/b) < ml/b
4a . Then,

ml
ml/b

< 1 +
Pr[|□| ≥ l] · f (l/b)

4

.

Proof. The only box sizes s for which the l-bounded poten-

tial differs from the l/b-bounded potential are the sizes s ≥ l . In
particular,

ml −ml/b = Pr[|□| ≥ l] · (Wl −Wl/b) ≤ Pr[|□| ≥ l] ·Wl .

Hence

ml −ml/b
ml/b

≤ Pr[|□| ≥ l] ·Wl
ml/b

.

Because ϕ(l/b) =Wl/b/f (l/b) <
ml/b
4a , it follows that

ml −ml/b
ml/b

<
Pr[|□| ≥ l] ·Wl
4aWl/b/f (l/b)

=
Pr[|□| ≥ l] · aWl/b
4aWl/b/f (l/b)

=
Pr[|□| ≥ l] · f (l/b)

4

.

Adding one to both sides,

ml
ml/b

< 1 +
Pr[|□| ≥ l] · f (l/b)

4

.

□

Next we compare the typical progress ϕ ′(l) of a box in a problem

of size l (ignoring the scan) to the typical progress ϕ(l/b) of a box

in a problem of size l/b. Note that

ϕ ′(l)/ϕ(l/b) = Wl /f ′(l)
Wl/b/f (l/b)

=
af (l/b)
f ′(l) .

Thus in order to prove a lower bound for ϕ ′(l)/ϕ(l/b) (i.e., to show

that the typical progress has increased between problem sizes), it

suffices to compare f (l/b) and f ′(l).

Lemma 7. Consider any problem size l ≥ b. Then,

f ′(l) ≤ a · f (l/b) · (1 − f (l/b) · Pr[|□| ≥ l]/2).

Recall that f ′(l) is the expected number of boxes needed to complete a
consecutive problems of size l/b, while f (l/b) is the expected number
of boxes needed to complete a single such problem.

Proof. Consider what happens when the algorithm A is run

on a problem of size l/b (while following the hard-stopping rule

as in Theorem 5). Define p to be the probability that a box of size

l or greater is generated during the problem. By the Martingale

Optional Stopping Theorem (Theorem 4), the expected number of

such boxes generated is f (l/b) · Pr[|□| ≥ l]. (In this application

of Theorem 4, the variables Xi are defined to be Xi = |□i |, and
γ (Xi) is the indicator variable I(|□i | ≥ l).) Note that no more than

one such box can be generated, however, since any box of size l or
greater will complete the problem of size l/b. Thus the probability
p of such a box being generated is equal to the expected number of

such boxes, and

p = f (l/b) · Pr[|□| ≥ l].

With this in mind, we consider f ′(l), the expected number of

boxes needed to complete a problems of size l/b. The first of the a
subproblems will require f (l/b) boxes to complete, in expectation.

With probability p, one of these boxes will be of size at least l , and
will thus complete the entire computation. Otherwise, the second

of the a subproblems will then require f (l/b) boxes to complete, in

expectation. Again, with probability p, one of these boxes will be of
size at least l , and thus complete the entire computation. Continuing

like this, the probability that the i-th subproblem is handled by a

large box from a previous subproblem is 1 − (1 − p)i−1, and thus

the expected number of additional boxes needed to handle the i-th

subproblem is (1 − p)i−1 · f (l/b). Summing over the subproblems,

f ′(l) =
a∑
i=1
(1 − p)i−1 · f (l/b)

≤ f (l/b) +
a∑
i=2
(1 − p)i−1 · f (l/b)

≤ a · f (l/b) · (1 − p/2).

Expanding p,

f ′(l) ≤ a · f (l/b) · (1 − f (l/b) · Pr[|□| ≥ l]/2),

as desired. □

Combining Lemmas 6 and 7, we can now complete the proof of

Proposition 1.

Proof of Proposition 1. Recall that
ϕ′(l)
ϕ(l/b) expands to

ϕ ′(l)
ϕ(l/b) =

af (l/b)
f ′(l) .

By Lemma 7, it follows that

ϕ ′(l)
ϕ(l/b) ≥

1

(1 − f (l/b) · Pr[|□| ≥ l]/2) ≥ 1 + f (l/b) · Pr[|□| ≥ l]/2.

Comparing this to Lemma 6, we see that

ϕ ′(l)
ϕ(l/a) ≥

ml
ml/b

,

as desired. □

A.2.2 Proof of Proposition 2. Proposition 2 is essentially about

bounding the impact of scans on typical progresses. We begin by

considering the number of boxes needed to perform a scan.

DefineQ(bt) to be the expected number of boxes needed to run a

scan of size bt on its own (while following the hard-stopping rule).

A box of a given size s could potentially make progress as much

as min(bt , s) through the scan. Thus one might intuitively expect

Q(bt) to be roughly bt
E[min(bt , |□ |)] . The following lemma proves this

up to a constant factor.

Lemma 8.

bt

E[min(bt , |□|)] ≤ Q(bt) < 2bt

E[min(bt , |□|)] .

Proof. Consider the sequence of box sizesA1,A2, . . . ,AS needed

to complete the scan. (Here S is a random variable.) For the box AS
to complete the scan, the progress across the entire sequence must

be

S∑
i=1

min(bt , |Ai |) ≥ bt .

Moreover, since each boxAi except the final boxAS makes progress

exactly |Ai | = min(bt , |Ai |) in the scan,

S∑
i=1

min(bt , |Ai |) ≤ bt +min(bt , |AS |) < 2bt .

Since the quantity

∑s
i=1min(bt , |Ai |) is deterministically be-

tween bt and 2bt − 1, its expectation must also be between bt

and 2bt − 1, satisfying

bt ≤ E
[S∑
i=1

min(bt , |Ai |)
]
< 2bt .

On the other hand, the Martingale Optional Stopping Theorem

(Theorem 4) tells us that

E

[S∑
i=1

min(bt , |Ai |)
]
= E[S]·E[min(bt , |□|)] = Q(bt)·E[min(bt , |□|)].

Hence,

bt

E[min(bt , |□|)] ≤ Q(bt) < 2bt

E[min(bt , |□|)] ,

as desired. □

We now complete the proof of Proposition 2

Proof of Proposition 2. In order to prove that∏
l<bt ≤n

ϕ(bt)/ϕ ′(bt) ≥ Ω(1),

it suffices to prove that∏
l<bt ≤n

f (bt)/f ′(bt) ≤ O(1), (17)

since ϕ(bt)/ϕ ′(bt) = f ′(bt)/f (bt). We an restate Equation 17 as∏
l<bt ≤n

(
1 +

f (bt) − f ′(bt)
f ′(bt)

)
≤ O(1).

Consider the scan at the end of a problem of size bt . Let p the

probability that a box of size at least bt is generated during one of

the a subproblems of size bt−1. Then with probability p, the box
generated during the a subproblems will complete the scan. On the

other hand, with probability (1−p), the scan will require additional

boxes. It follows by Lemma 8 that

f (bt) − f ′(bt) = (1 − p) ·Q(bt) < (1 − p) · 2bt

E[min(bt , |□|)] .

To prove the proposition, it therefore suffices to show that∏
l<bt ≤n

(
1 + (1 − p) · 2bt

E[min(bt , |□|)] · f ′(bt)

)
≤ O(1).

Equivalently, we wish to prove that∑
l<bt ≤n

ln

(
1 + (1 − p) · 2bt

E[min(bt , |□|)] · f ′(bt)

)
≤ O(1).

Since ln(1 + x) ≤ x for all x ≥ 0, we may instead prove that∑
l<bt ≤n

(
(1 − p) · 2bt

E[min(bt , |□|)] · f ′(bt)

)
≤ O(1). (18)

Let use take a moment to solve for p. Recall that within a prob-

lem of size bt , p is the probability that a box of size at least bt is
generated during any one of the a subproblems of size bt−1. By the

Martingale Optional Stopping Theorem (Theorem 4), the expected

number of such boxes generated is given by Pr[|□| ≥ bt] · f ′(bt).
Moreover, at most one such box can be generated (since it will then

complete the problem of size bt). Hence the number of such boxes

is an indicator variable, and the probability p of such a box being

generated is also Pr[|□| ≥ bt] · f ′(bt). Expanding p in Equation 18,

the sum we wish to bound becomes

∑
l<bt ≤n

(
(1 − Pr[|□| ≥ bt] · f ′(bt)) 2bt

E[min(bt , |□|)] · f ′(bt)

)
=

∑
l<bt ≤n

(
2bt

E[min(bt , |□|)] · f ′(bt) −
2bt · Pr[|□| ≥ bt]
E[min(bt , |□|)]

)
.

Next we focus on f ′(bt). By the fact that bt > l and by the

definition of l in the statement of the proposition, we know that

ϕ(bt) ≤ mbt
4a . Expanding ϕ(bt), this means thatWbt /f (bt) ≤

mbt
4a ,

and thus that

f (bt) ≥ 4a ·Wbt

mbt
=

4at+1

mbt
. (19)

In order to transform this into a statement about f ′(bt), notice that
f ′(bt) ≥ f (bt)/2. In particular, f ′(bt) counts the number of boxes

needed to completea subproblems of sizebt−1. This includesa scans
of size bt−1. The expected number of boxes needed to complete

these scans alone is at least the number of boxes needed to complete

a scan of size a ·bt−1 > bt . Since the hard-stopping rule guarantees
that any sequence of boxes which completes the a subproblems

could have also completed the a scans alone (without the additional

portions of the subproblems), it follows that a subproblems of size

bt−1 require, in expectation, at least as many boxes as a scan of

length bt , meaning that f ′(bt) ≥ f (bt) − f ′(bt), and thus that

f ′(bt) ≥ f (bt)/2. Combining this with Equation 19, we get that

f ′(bt) ≥ 2at+1

mbt
.

Plugging this into our sum, it suffices to prove the bound∑
l<bt ≤n

(
bt ·mbt

E[min(bt , |□|)] · at+1
− 2bt · Pr[|□| ≥ bt]
E[min(bt , |□|)]

)
≤ O(1).

Define rbu = Pr[|□| = bu] to be the probability of a box taking

size bu . Our sum expands to

∑
l<bt ≤n

©«
bt ·

(∑
u<t rbuWbu + Pr[|□| ≥ b

t] ·Wbt
)

E[min(bt , |□|)] · at+1
−

2bt · Pr[|□| ≥ bt]
E[min(bt , |□|)]

)
=

∑
l<bt ≤n

©«
bt ·

(∑
u<t rbu a

u + Pr[|□| ≥ bt] · at
)

E[min(bt , |□|)] · at+1
− 2bt · Pr[|□| ≥ bt]
E[min(bt , |□|)]

ª®®¬
=

∑
l<bt ≤n

(
bt ·∑u<t rbu a

u

E[min(bt , |□|)] · at+1
+

bt · Pr[|□| ≥ bt]
E[min(bt , |□|)] · a

− 2bt · Pr[|□| ≥ bt]
E[min(bt , |□|)]

)
.

Using half of the third sum to dominate the second sum, this is at

most ∑
l<bt ≤n

(
bt ·∑u<t rbua

u

E[min(bt , |□|)] · at+1
− bt · Pr[|□| ≥ bt]
E[min(bt , |□|)]

)
. (20)

Focusing on the positive summands,∑
l<bt ≤n

bt ·∑u<t rbu a
u

E[min(bt , |□|)] · at+1

=
∑

bu <n

∑
bu ,l<bt ≤n

bt · rbu a
u

E[min(bt , |□|)] · at+1

=
∑

bu ≤l

∑
l<bt ≤n

bt · rbu a
u

E[min(bt , |□|)] · at+1
+

∑
l<bu ≤n

∑
bu <bt ≤n

bt · rbu a
u

E[min(bt , |□|)] · at+1

≤
∑

bu ≤l

∑
l<bt ≤n

bt · rbu a
u

E[min(bt , |□|)] · at+1
+

∑
l<bu ≤n

∑
bu <bt ≤n

bt · rbu a
u

E[min(bu , |□|)] · at+1

=
∑

bu ≤l

∑
l<bt ≤n

bt · rbu a
u

E[min(bt , |□|)] · at+1
+

∑
l<bu ≤n

bu · rbu a
u

E[min(bu , |□|)] · au+1
·

∑
bu <bt ≤n

(b/a)t−u

<
∑

bu ≤l

∑
l<bt ≤n

bt · rbu a
u

E[min(bt , |□|)] · at+1
+

∑
l<bu ≤n

bu · rbu a
u

E[min(bu , |□|)] · au+1
·
∑
s≥0
((a − 1)/a)s

=
∑

bu ≤l

∑
l<bt ≤n

bt · rbu a
u

E[min(bt , |□|)] · at+1
+

∑
l<bu ≤n

bu · rbu a
u

E[min(bu , |□|)] · au+1
· a

=
∑

bu ≤l

∑
l<bt ≤n

bt · rbu a
u

E[min(bt , |□|)] · at+1
+

∑
l<bu ≤n

bu · rbu
E[min(bu , |□|)] .

Adding back in the negative terms from Equation 20, we get that

Equation 20 is at most∑
bu ≤l

∑
l<bt ≤n

bt · rbu a
u

E[min(bt , |□|)] · at+1
+

∑
l<bu ≤n

bu · rbu
E[min(bu , |□|)] −

∑
l<bt ≤n

bt · Pr[|□| ≥ bt]
E[min(bt , |□|)]

.

Since Pr[|□| ≥ bt] ≥ rbt , the third sum dominates the second sum,

and thus we are left with at most∑
bu ≤l

∑
l<bt ≤n

bt · rbuau
E[min(bt , |□|)] · at+1

.

Since u < t , we have rbub
u ≤ E[min(bt , |□|)], and thus our expres-

sion is at most ∑
bu ≤l

∑
l<bt ≤n

bt−u · au
at+1

≤
∑
bu ≤l

1

a
·
(
b

a

)−u
·
∑
l<bt

(
b

a

)t
.

If we define k such that l = bk , then the sum can be rewritten as∑
u≤k

1

a
·
(
b

a

)k−u
·
∑
t>0

(
b

a

)t
<

∑
u≤k

1

a
·
(
b

a

)k−u
·
∑
t ≥0

(
a − 1
a

)t
=

∑
u≤k

1

a
·
(
b

a

)k−u
· a

=
∑
u≤k

(
b

a

)k−u
= O(1),

which completes the proof. □

B ROBUSTNESS OF WORST-CASE PROFILES

In this section, we consider three ways to smooth worst-case pro-

files: box-size perturbations, start time perturbations and, box-order

perturbations. In all three cases the smoothed profiles will remain

examples of profiles on which any (a,b, 1)-regular algorithm (where

a > b), Aa,b , is not adaptive. We show that the canonical worst-

case profiles are robust to these perturbations and not brittle, by

exploiting self-symmetry within worst-case profiles and the power

of the No-Catchup Lemma. This is surprising because the canonical

worst-case profile seems fragile—it gives Aa,b memory only when

the algorithm can’t use it, and gives as much memory as possible

at those times.

Throughout the section, we examine a specific (a,b, c)-regular
algorithm with constants a,b ∈ N satisfying a > b and c = 1.

We define the canonical (a,b, 1)-regular algorithm Aa,b (n) on
problem-sizes n that are powers of b as follows: If n > 1, then the

algorithm Aa,b (n) first recursively performs a subproblems of size

n/b. Then (regardless of whether n > 1), the algorithm Aa,b (n)
accesses each of the blocks 1, 2, . . . ,n, one after another.

For n a power of b, the canonical worst-case profile Ma,b (n) is
the profile constructed so that each scan in the the algorithmAa,b
will be covered by a box exactly the size of that scan (i.e., the number

of block-accesses in the scan). In particular,Ma,b (n) consists of a
single box of size 1 when n = 1, and otherwise recursively consists

of a instances ofMa,b (n/b) followed by a box of size n. We define

Ma,b to be the infinite profile containing Ma,b (n) as a prefix for

each n that is a power of b.
We say that a square profileM is worst-case for the algorithm

Aa,b (n) if the sequence of boxes used to complete Aa,b (n), M =
□1, . . . ,□k , satisfies

k∑
i=1

min(n, |□i |)logb a ≥ Ω(logn) · nlogb a .

In particular, such a profile M ensures that the algorithm A is at

least an Ω(logn) factor off from cache-adaptive, which by the re-

sults of [5] make M a worst-case profile (up to a constant factor).

Similarly, we say that a probability distributionM on square pro-

files isworst-case (in expectation) for the algorithmAa,b (n) if for
M randomly selected fromM, the sequence of boxes (□1, . . . ,□k)
used to completeM (note that now k is a random variable) satisfies

E

[k∑
i=1

min(n, |□i |logb a)
]
= Ω(logn) · nlogb a .

When all the box-sizes considered are trivially of sizen or smaller,

as will often be the case in this section, we omit the minimum in

the above sum.

Bender et al. [5] showed that Ma,b is a worst-case profile for

Aa,b (n) for all n. Notice, in particular, that an execution ofAa,b (n)
on Ma,b will use exactly the boxes in the prefix Ma,b (n) of Ma,b ,

with each scan using a box of precisely the same size as the scan; and

by induction on n, the sum of |□|logb a over the boxes inMa,b (n) is
logb n · nlogb a .

In this section, we consider the robustness of the worst-case

memory profileMa,b to three types of smoothing:

• Box-size Perturbations: In Appendix B.1 we consider what

happens if each box inMa,b has its size randomly perturbed

(i.e., multiplied by a value in [0, 1] drawn from a distribution

P that has constant expectation). We show that the resulting

distributionM remains worst-case in expectation.

• Start Time Perturbations: In Appendix B.2, we consider

what happens if the memory profileMa,b (n) is cyclic-shifted
by a random quantity. Shifting the memory profile is equiv-

alent to executing algorithm Aa,b (n) starting at a random
start-time in the cyclic version ofMa,b (n). Again, the result-
ing distribution of profiles remains worst-case in expecta-

tion.

• Box-order Perturbations: In Appendix B.3, we consider a

relaxation of the construction of Ma,b (n) in which rather

than always placing a box of size n after the final instance
ofMa,b (n/b), we instead allow ourselves to place the box of

size n after any of the a recursive instances ofMa,b (n/b). We

prove that the resulting distribution over box sizes again re-

mains worst-case in expectation. In fact, for a square profile

M drawn from the distribution at random, we find that M
remains worst-case with probability one. This is a large con-
trast to random shuffling considered in Appendix A, where

the random shuffle causes the algorithms to be adaptive in

expectation.

B.1 Box-size Perturbations

In this section, we consider the distribution over square profiles

generated by randomly perturbing the sizes of boxes within the

profileMa,b and show that algorithm Aa,b is not cache-adaptive

on the modified profile (for all problem sizes n).

Theorem 6. Let n be the size of an input to the algorithmAa,b , t ∈
[1,
√
n] be an arbitrary value, and let P be a probability distribution

on [0, t]. Suppose that the expected value of a random variable drawn
from P is at least Ω(t).

Let X1,X2, . . . be iid random variables drawn from P. Let M ′a,b
be constructed by replacing each box □i in Ma,b with a box of size
Xi · |□i |. ThenM ′a,b is worst-case for Aa,b (n) in expectation.

We begin by presenting two lemmas about algorithm perfor-

mance on modified box sizes.

Lemma 9. Let M = (□1,□2, . . .) be an arbitrary square profile.
Suppose that when Aa,b (n) is executed on M , it completes at box
□k . Now define M ′ = (□′

1
,□′

2
, . . .) to be a square profile such that

|□′i | ≤ |□i | for all i . (For convenience, we will even allow |□′i | = 0.)
Then when Aa,b (n) is executed onM ′, it completes at some box □′k ′
satisfying k ′ ≥ k .

Proof. This follows by repeated applications of the No-Catchup

Lemma (Lemma 2). Suppose thatM andM ′ differ only in their i-th
box, with |□′i | < |□i |. Then the first (i − 1) boxes of each ofM and

M ′ will finish at the same point within Aa,b (n) (i.e., will finish
after the same block access). The i-th box ofM ′ will then finish at

the same point or earlier within Aa,b (n) than does the i-th box of

M . By the No-Catchup Lemma, it follows that the k-th box ofM ′

will also finish at the same point within Aa,b (n) or earlier than
does the k-th box ofM . SinceAa,b (n) requires k boxes to complete

Time

m(t)

Time

m(t)

Figure 4: An example of randomly perturbing box sizes. The top profile isMa,b when a = 3 and b = 2. The bottom profile is an

example of a random multiplication of the box sizes inMa,b .

on profileM ,Aa,b (n) will also require at least k boxes to complete

on profileM ′.
The above reasoning assumes that M and M ′ differ in only a

single box. By k repeated applications of the argument, we may

instead allow M and M ′ to differ in all of their first k boxes. This

implies the full lemma. □

Lemma 10. Let α · Ma,b denote the memory profile obtained by
multiplying the size of each box inMa,b by α . If α ≤

√
n is a power

of b, then α ·Ma,b is still a worst-case profile for Aa,b (n).

Proof. The proof of the lemma takes advantage of the self-

symmetry implicitly present withinMa,b . In particular, notice that

α ·Ma,b can be obtained fromMa,b by removing every box inMa,b
of size smaller than α .

Define M ′a,b (n) to be the profile obtained by removing every

box from Ma,b (n) of size smaller than α . By Lemma 9, the algo-

rithm Aa,b (n) will require (at least) all of the boxes inM ′a,b (n) to
complete, since it requires all of the boxes inMa,b (n) to complete.

Since α · Ma,b contains M ′a,b (n) as a prefix, in order to prove

that α ·Ma,b is a worst-case profile, it suffices to show that the sum

of |□|logb a over the boxes in M ′a,b (n) is Ω(logn · n
logb a). That is,

ifM ′a,b (n) = (□1, . . . ,□k), then we wish to show that

k∑
i=1
|□i |logb a = Ω(logn · nlogb a).

Notice that for each box-size n/b j such that b j ≤
√
n, the profile

M ′a,b (n) contains a
j
instances of a box of size n/b j . (In particular,

the recursive construction ofMa,b includes aj subproblems of size

n/b j .) Thus
k∑
i=1
|□i |logb a

≥
b j=
√
n∑

b j=1

aj ·
(n
b j

)
logb a

=

b j=
√
n∑

b j=1

aj · n
logb a

aj

= Θ(logn) · nlogb a ,

as desired. □

Combining Lemmas 9 and 10, we can now complete the proof of

Theorem 6.

Proof of Theorem 6. Let T be the smallest power of b greater

than t . By Lemma 10, the square profile T ·Ma,b is worst-case for

Aa,b (n).
Suppose thatAa,b (n) uses k boxes to complete onT ·Ma,b . Since

T ·Ma,b has the property that its i-th box is of size at least as large

as the i-th box ofM ′a,b , Lemma 9 tells us thatAa,b also requires at

least k boxes to complete onM ′a,b .
13

Since T ·Ma,b is a worst-case

profile, in order to complete the proof, it therefore suffices to show

that

E

[k∑
i=1
(Xi · |□i |)logb a

]
≥ Ω

(k∑
i=1
(T · |□i |)logb a

)
.

By linearity of expectation, it suffices to prove that E[X logb a
i] ≥

T logb a . Since the function f (x) = x logb a is convex (because a > b),
Jensen’s inequality tells us that

E[X logb a
i] ≥ E[Xi]logb a ≥ Ω(T logb a),

as desired. □

13
Note that if a box in Ma,b has its size multiplied by zero, resulting in an empty box

in M ′a,b , we still consider that box when talking about the i-th box of M ′a,b .

Time

m(t)

Random time point

t=r

Figure 5: An example of picking a random start time with the M◦a,b profile where a = 3 and b = 2. If we start the algorithm at

time t = r instead of t = 0 we have created a cyclic shift.

B.2 Start Time Perturbations

In this section, we consider another natural form of smoothing, in

which the algorithm Aa,b (n) begins at a random start-time within

a cyclic version of the profileMa,b (n). Random start times simulate

jobs starting at arbitrary times while a system is running.

Define the profileM◦a,b (n) = Ma,b (n)◦Ma,b (n)◦Ma,b (n)◦· · · to
be the infinite profile consisting of duplicates of the profileMa,b (n).
We will use (□1,□2, . . .) to denote the boxes inM◦a,b (n).

We will now generate truncated profiles simulating random start

times by removing boxes from the beginning ofM◦a,b (n). Let k be

the number of boxes inMa,b (n) and t =
∑k
i=1 |□i | denote the sum

of the sizes of the boxes inMa,b (n). Define a distributionM over

infinite profiles such that M ∈ M is constructed as follows: first

select a random r ∈ {0, 1, . . . , t − 1}; then identify the first box □j

such that

∑j
i=1 |□i | ≥ r ; finally, constructM by removing each of

the boxes □1, . . . ,□j−1, and replacing the box □j with a box of size(∑j
i=1 |□i |

)
− r .

The purpose of this section is to prove the following theorem:

Theorem 7. Suppose n > 1 is a power of b. The distributionM,
in which a random start-time is selected within the cyclic profile
M◦a,b (n), is worst-case in expectation for Aa,b (n).

Proof. Recall that the profile Ma,b (n) can be expressed as a
copies of the profile Ma,b (n/b), along with a box of size n. Let A
denote the prefix ofMa,b (n) consisting of the first a − 1 copies of
the profileMa,b (n/b), and let B denote the final copy of the profile

Ma,b (n/b) along with the box of size n.
Let (□1, . . . ,□x) denote the boxes in A and (□′

1
, . . . ,□′y) denote

the boxes in B. We claim that

x∑
i=1
|□i | ≥ Ω

(y∑
i=1
|□′i |

)
, (21)

and that

x∑
i=1
|□i |logb a ≤ O

(y∑
i=1
|□′i |

logb a

)
. (22)

Before proving Equation 21 and Equation 22, we first use them

to complete the proof of the theorem. When constructing a random

profile M inM, Equation 21 tells us that with probability Ω(1),
r will satisfy r ≤ ∑x

i=1 |□i |. When this occurs, the profile M can

be obtained from the profileM◦a,b (n) by eliminating and shrinking

boxes in the subsequence (□1, . . . ,□x) and not modifying any other

boxes. If we identify each of the boxes □x+1,□x+2, . . . inM◦a,b (n)

with their counterparts in M , then by Lemma 9, when Aa,b (n)
is executed on M it will still use all of the boxes □x+1, . . . ,□x+y .
Recall thatMa,b (n) has the property that

x+y∑
i=1
|□i |logb a = logn · nlogb a .

By Equation 22, it follows that

x+y∑
i=x+1

|□i |logb a ≥ Ω
(
logn · nlogb a

)
. (23)

Thus when we condition on r ≤ ∑x
i=1 |□i |, the box-profile M is

guaranteed to be worst-case. Since this occurs with probability

Ω(1), it follows thatM is worst-case in expectation.

It remains to prove Equation 21 and Equation 22. Since A con-

sists of a − 1 copies of Ma,b (n/b) and B contains a single copy of

Ma,b (n/b) followed by a box of size n, it follows that

n +
x∑
i=1
|□i | ≥

(y∑
i=1
|□′i |

)
, (24)

and that

x∑
i=1
|□i |logb a ≤ (a − 1) ·

y∑
i=1
|□′i |

logb a . (25)

Since a ≥ 2, Equation 25 implies Equation 22, as desired. Since the

box sequence A = (□1, . . . ,□x) contains an instance ofMa,b (n/b),
it must contain at least one box of size n/b. Thus

(b + 1) ·
x∑
i=1
|□i | ≥ n +

x∑
i=1
|□i |.

Combining this with Equation 24, we get Equation 21, as desired.

□

B.3 Box-order Perturbations

In this section, we consider smoothing via shuffling positions of

boxes within the profile Ma,b . In particular, for n a power of b,
we define Ta,b (n) to be the set of profiles constructed as follows:

When n = 1, Ta,b (n) contains a single profile consisting of a box

of size one. When n > 1, Ta,b (n) consists of all profilesM that can

be constructed by selecting sub-profiles X1, . . . ,Xa ∈ Ta,b (n/b),
inserting a box of size n after one of the profiles Xi , and then

concatenating the sub-profiles together. That is,

M = X1 ◦ X2 ◦ · · · ◦ Xi ◦ □ ◦ Xi+1 ◦ · · · ◦ Xa ,

Time

m(t)

Time

m(t)

Figure 6: An example of re-ordering an Ma,b profile. In this case a = 3 and b = 2. The top profile is Ma,b , the bottom profile is

M .

for some i ∈ {1, . . . ,a}, and where □ is a box of size n. We depict

an example of a re-ordered profile,M , in Figure 6.

The profilesM in the set Ta,b (n) can be thought of as relaxations

of the profileMa,b (n). In particular, they are the profiles obtained

by allowing the recursive construction ofMa,b (n) to, at each step

in the recursion, place a scan after an arbitrary subprofile rather

than always after the final subprofile.

We define the set Ta,b of infinite box-profiles to contain all pro-

files M that for all n (that are powers of b) contain as a prefix an

element of Ta,b (n).
The main purpose of this section is to prove that all profiles

M ∈ Ta,b are worst-case profiles for the algorithm Aa,b . That, is,

the recursive construction of the worst-case profile Ma,b is robust

to random shuffling of large boxes within the recursive structure.

Theorem 8. All profiles M ∈ Ta,b are worst-case profiles for the
algorithm Aa,b .

Proof. For n a power of b, define the Universal Worst-Case
Profile Ua,b (n) as follows. When n = 1,Ua,b (n) consists of a single
box of size 1 repeated a times. When n > 1, we constructUa,b (n)
by concatenating together a copies of Ua,b (n/b), and inserting a

box of size n after each of them. That is,

Ua,b (n) =
(
Ua,b (n/b) · □

)a
,

where □ is a box of size n, and the multiplication operator is defined

to perform concatenation.

Define the infinite-square profileUa,b to be the unique infinite-

square profile that contains each Ua,b (n) as a prefix. We claim that

Ua,b is a worst-case profile for Aa,b . In fact, a stronger statement

is true: The profile Ua,b (n) is the same as the profile Ma,b (n · b),
except without the final box of size n · b that appears at the end

of the latter. This statement follows immediately by induction on

logb n. It follows that Ua,b = Ma,b , and that Ua,b is a worst-case

profile.

We now demonstrate how to construct each profileM ∈ Ta,b (n)
by removing boxes from Ua,b (n). In particular, we claim that each

profileM ∈ Ta,b (n) can be obtained from the universal worst-case

profile Ua,b (n) by removing exactly an
a−1
a fraction of the boxes

in each size-class from Ua,b (n). When n = 1, this is immediate,

since Ua,b (n) consists of a boxes of size one, and the only profile

in Ta,b (1) consists of a single box of size one. When n > 1 is a

power of b, the claim follows by induction, using as an inductive

hypothesis that Ua,b (n/b) can be transformed into any element

of Ta,b (n/b) by removing a
a−1
a fraction of the boxes in each size-

class. Recall, in particular, that each profileM ∈ Ta,b (n) is obtained
by selecting a profiles X1, . . . ,Xa ∈ Ta,b (n/b), and concatenating

them together with a single box of size n after one of them. The

universal profile Ua,b (n), on the other hand, is obtained by pasting

together a copies of Ua,b (n/b) with a box of size n after each of

them. By removing all but of one of the boxes of size n fromUa,b (n)
(which corresponds with removing a

a−1
a fraction of the boxes of

size n), and then applying the inductive hypothesis to each of the

copies ofUa,b (n/b) in order to transform it into Xi , it follows that
each M ∈ Ta,b (n) can be constructed by removing from Ua,b (n)
some choice of

a−1
a fraction of the boxes in each size-class.

Since Ua,b (n) is a prefix of Ma,b (n · b), when Aa,b (n · b) is
executed on profile Ua,b , it must use all the boxes in Ua,b (n). For
each box-size s , let ts denote the number of boxes of size s inUa,b (n).
By the claim in the preceding paragraph, and by Lemma 9, when

Aa,b (n · b) is executed on any element M ∈ Ta,b , it must use at

least ts/a boxes of each size s . If (□′
1
,□′

2
, . . .) denotes the profileM ,

and k is the number of boxes that Aa,b (n · b) uses when executed

onM , it follows that

k∑
i=1
|□′i |

logb a =
∑
s

ts
a
· s logb a ≥ Ω

(∑
s

ts · s logb a
)
. (26)

SinceUa,b (n) is the same asMa,b (n ·b), except with the final box

of size n removed, |□|logb a over the boxes in Ua,b (n) is Ω(logn ·
nlogb a). Thus the right-hand side of Equation 26 is Ω(logn ·nlogb a).
It follows that the profile M ∈ Ta,b is a worst-case profile, as

desired. □

C PSEUDOCODE FORMM-SCAN

Algorithm 1 Cache-oblivious matrix multiply of two n×nmatrices (each of size N = n2) withΘ(1+N /B) linear scan [28]. In this pseudocode,
ABR refers to the Bottom Right quadrant of a matrix, AT L the Top Left, etc.

functionMM-Scan(n,A,B)
if N = 1 then

return A × B
else

XT L ← MM-Scan(n/2,AT L ,BT L)
XTR ← MM-Scan(n/2,AT L ,BTR)
XBL ← MM-Scan(n/2,ABL ,BT L)
XBR ← MM-Scan(n/2,ABL ,BTR)
YT L ← MM-Scan(n/2,ATR ,BBL)
YTR ← MM-Scan(n/2,ATR ,BBR)
YBL ← MM-Scan(n/2,ABR ,BBL)
YBR ← MM-Scan(n/2,ABR ,BBR)

C ← X + Y ▷ Linear scan

return C

D PROOF OF THEOREM 4 AND LEMMA 4

Theorem 4 (Martingale Optional Stopping Theorem [58]). Let
X1,X2, . . . be iid random variables, and let γ be a function such that
γ (Xi) has finite mean µ. Consider an arbitrary process that runs in
steps, and at each step i is given the value of Xi . Suppose that the
process terminates after no more than C steps for some value C . Let S
be the random variable denoting the number of steps that the process
runs. Then,

E

[S∑
i=1

γ (Xi)
]
= E[S] · µ .

Proof. Expanding E[∑S
i=1 γ (Xi)] gives

E

[S∑
i=1

γ (Xi)
]
=

C∑
i=1

Pr[S ≥ i] · E[γ (Xi) | S ≥ i].

The key observation is that E[γ (Xi) | S ≥ i] = µ, since the decision
of whether S ≥ i is a function only ofX1, . . . ,Xi−1, and is therefore
independent of Xi . Thus

E

[S∑
i=1

γ (Xi)
]
= µ ·

C∑
i=1

Pr[S ≥ i] = µ · E[S].

□

Lemma 4. For any box-size distribution Σ, and any (a,b, c)-regular
algorithm A,

E

Sn∑
i=1

mn (|□i |)
 = E[Sn] ·mn .

Proof. Consider the randomprocess that selects boxes□1, . . . ,□Sn ,
each of size independently drawn from a distribution Σ, until the
algorithm A is able to use the box to complete on any problem

of size n. Then since Sn is bounded above by a function of n (i.e.,

Sn ≤ O(nlogb a)), Theorem 4 tells us that

E

Sn∑
i=1

mn (|□i |)
 = E[Sn] ·mn .

□

E PROOF OF THE NO-CATCH-UP LEMMA

Lemma 2. Let σ = (r1, r2, r3, . . .) be a sequence of memory refer-
ences, and let S = (□1,□2, . . .□k) be a sequence of squares. Suppose
that if □1 starts at ri , then □k finishes at r j . Then, for all i ′ < i , if □1
starts at ri′ , then for some j ′ ≤ j, □k finishes at r j′ .

Proof. We prove this via induction on k , the number of squares

in the sequence. We first prove the base case of k = 1.

In the base case when k = 1, if A starts □1 at access ri and
finishes □1 at access r j , then the number of distinct blocks in the

sequence ri , . . . , r j+1 is |□1 | + 1. This is because a block of size |□1 |
lasts for |□1 | cache misses and |□1 | + 1 distinct blocks are needed
to generate |□1 | cache misses. If A instead starts □1 on access ri′

for some i ′ < i , then the number of distinct blocks in the sequence

ri′ , . . . , ri , . . . , r j+1 will also be at least |□1 | + 1. Thus, □1 cannot
now finish at any r j′ satisfying j ′ ≥ j + 1.

For our inductive step, we assume that the lemma holds for

all k ≤ l . We now prove the lemma holds for k = l + 1. Given

□1, . . . ,□l and a starting point ri , let rq be the access at which □l
finishes whenA starts □1 at access ri . By our inductive hypothesis,
if A starts □1 at access ri′ where i

′ < i , then A must finish □l
at access rq′ where q

′ ≤ q. Applying our proof of the base case

(when k = 1), the memory access r j at which □l+1 will finish if it

starts at rq+1, must come at or after the memory access r j′ at which
□l+1 will finish if it starts at rq′+1. This completes the proof of the

theorem. □

F STANDARDIZING (a,b, c = 1)-REGULAR
ALGORITHMS

Lemma 11. Let A be an (a,b, c = 1)-regular algorithm, where
b < a ∈ O(1). Then there is an (a,b, c = 1)-regular algorithm A ′
which has the same access pattern as A but which can be written as
(1) a single scan consisting of at most O(n) block accesses followed
by (2) an (a,b, c = 1)-regular algorithm B in which in which each
subproblem has its scan entirely at the end of the subproblem (rather
than between or before sub-calls to smaller subproblems).

The proof of Lemma 11 uses a variant of the “scan hiding” tech-

nique from [40].

Proof. For each subproblem in A, we break the scan into a + 1
scan pieces, where the first scan piece is the portion of the scan that
occurs before any recursion, the second scan piece is the portion of

the scan that occurs between the first and second recursive subcall,

and so on.

Consider an execution of A on an input of size n. Call a non-
base-case subproblem S in A a prefix subproblem if S is either

the entire problem of size n, or is the subproblem resulting from

the first recursive call of another prefix subproblem. Call a scan

piece a prefix scan piece if it appears at the beginning of a prefix

subproblem, before any recursive calls are made within the prefix

subproblem.

Notice that in the execution of A, the prefix scan pieces are

performed before any other part of the computation. We define

A ′ to begin by performing the prefix scan pieces together as a

single large scan. For each subproblem size, there can be at most

one prefix subproblem of that size. Thus the sum of the sizes of the

prefix scan pieces is at most

O
©«
logb n∑
i=1

bi
ª®¬ ≤ O(n).

Moreover, since there are only O(logn) such pieces, their concate-

nation will still satisfy the property that a sufficiently large cache

of constant size can complete them in O(n) accesses.
The algorithm A ′ must then perform the portions of A that

are not prefix scan pieces. Next we reinterpret these portions as

an (a,b, c)-regular algorithm B in which scans occur only at the

ends of subproblems. In a subproblem S of A, we call a scan piece

unassigned if it is not a prefix scan piece and occurs before the

final recursive subcall in the subproblem.

For each unassigned scan piece in A, we “assign ownership” for

the scan piece to whichever subproblem finishes the latest out of

the subproblems that finish before the scan piece. (Note that such a

subproblem will exist because the scan-piece is not a prefix scan

piece.) We then define B to be the algorithm with the same access

pattern as A (without the prefix scan pieces), except that in the

execution of B each subproblem (including base-case subproblems)

includes any later scan pieces to which the subproblem has been

assigned ownership. (Note, in particular, that each subproblem in

A appears immediately before all scan-pieces to which it has been

assigned ownership, with no other memory accesses in-between.)

Let us consider the sum of the sizes of the scan-pieces assigned to

any given subproblem S of some sizem. Note that any subproblem

S ′ of size greater than b ·m cannot assign ownership of any of its

scan pieces to S ; in particular, the subproblem of sizeb ·m containing

S must complete before any scan pieces in any such subproblem S ′

can occur, thereby preventing the scan pieces from being assigned

to S . Moreover, for each sub-problem-size k ≤ b ·m there can be

at most one subproblem of size k that assigns ownership of any of

its scan pieces to S . Thus the total combined size of the scan pieces

assigned to S can be at most

O
©«
logb (b ·m)∑

i=1
bi

ª®¬ ≤ O(m).

This ensures that the scans in each subproblem of sizem in B
accessO(m) distinct blocks, andmore importantly, can be completed

by a constant-size cache in time O(m), meaning that algorithm B
is, in fact, an (a,b, c)-regular algorithm. Since all of the scans in B
occur only at the ends of subproblems, the proof is complete. □

G TRIANGLE PROFILES

Previous work showed that only considering square profiles is

sufficient [6] for determining cache-adaptivity of an algorithm. In

this section, we show the same result but with right triangles. A

triangle profile can be described as a square profile where the cache

is cleared between each square, hence producing a “triangular”

profile composed of many adjacent right triangles.

Throughout this section, we use A to refer to some particu-

lar (a,b, c)-regular algorithm where a,b ∈ N and a,b, c are con-

stants. Recall Lemma 1 relating potential to (a,b, c)-regular algo-
rithms; since the algorithm A in question is (a,b, c)-regular, we let
ρ(|□i |) = Θ(|□i |logb a). Finally, we letWn = Θ(nlogb a) be the total
amount of progress A must make on a problem of size n in order

to complete. Throughout this section, we treat bothWn and ρ(|□i |)
as fixed polynomials in n and |□i |, respectively, provided constants

a, b, and c .
Intuitively, we show that triangle profiles are sufficient in proving

the optimality (or non-optimality) of algorithms by noting that a

box of X cache lines that lasts for X time steps fits under a triangle

that starts with 0 cache lines, ends at 2X cache lines, and lasts for

2X time steps
14
. This logic accounts for the outer triangle in Fig. 7.

We also note that a triangle of height and width X fits inside a box

of size X , accounting for the inner triangle in Fig. 7. This intuition

tells us that any square profile can be upper and lower bounded by

a triangle profile up to a factor of 2 (or 1/2).
We now formalize this intuition. First, take a square profile and

consider two related triangular profiles, the lower triangular profile

and the upper triangular profile.

Definition 4. A triangle, , of size X lasts for X IOs and on the ith

IO the size of the cache is i cache lines.
The size of a triangle is represented as | | = X .

Definition 5. A triangular profile,M(t), is formed by a sequence of
k triangles 1 ◦ 2 ◦ . . . ◦ k of sizes 1 = X1.

Definition 6. Given a square profileM(t) = □1 ◦ . . . ◦ □k we will
define the lower and upper triangular profiles.

The lower triangular profile ofM(t) isMLT (t) where
1 ◦ 2 ◦ . . . ◦ k and | i | = |□i |.
The upper triangular profile ofM(t) isMUT (t) where
′
1
◦ ′

2
◦ . . . ◦ ′

k and | ′i | = 2|□i |.

We give an example of an upper and lower triangular profile in

Figure 8. We will similarly need to bound a triangular profile by

square profiles.

Definition 7. Given a triangular profile
T (t) 1 ◦ 2 ◦ . . . ◦ k we will define the lower square profile.

The upper square profile of T (t) is TU S (t) where
□1 ◦ □2 ◦ . . . ◦ □k and |□i | = | i |.

The lower square profile of T (t) is TLS (t) where
□′
1
◦ □′

2
◦ . . . ◦ □′k and |□′i | = | i |/2.

Definition 8. Let ρ() be the maximum possible progress that A
can make on a triangle of size | |.

14
Recall that time steps are counted in terms of block read-ins from disk to cache.

Lemma 12. Consider | 1 | = x , | 2 | = 2x and |□1 | = x .
Then the progress for our :

ρ(1) = Θ
(
x logb (a)

)
(27)

ρ(2) = Θ
(
x logb (a)

)
(28)

ρ(□1) = Θ
(
x logb (a)

)
(29)

Proof. Note that we can solve a problem of size x using 1.

Thus, we can make x logb (a) progress. By Lemma 1 we have that

ρ(□1) = Θ
(
x logb (a)

)
. A triangle of size x fits inside a square of size

x and by memory monotonicity we have that ρ(1) = O
(
x logb (a)

)
.

Thus, ρ(1) = θ
(
x logb (a)

)
.

By this we have that ρ(2) = θ
(
(2x)logb (a)

)
. Simplified ρ(2) =

θ
(
x logb (a)

)
.

□

Corollary 1. LetM(t) be a square profile. Then the progress for our
(a,b, c)-regular algorithm is:

ρ(MLT (t)) = Θ (ρ(M(t))))
and

ρ(MUT (t)) = Θ (ρ(M(t))) .

Proof. ρ(M(t)) is the sum of the progress in the squares that

make up the profile. ρ(MUT (t)) and ρ(MLT (t)) are the sums of the

progress in the triangles that make up the profile. For any particular

square, |□i | = x , inM(t) there is a one to one correspondence with

a triangle | i | = x in profile MLT (t) and a triangle | ′i | = 2x in

profileMUT (t). By Lemma 12 these all have the same progress up

to constant factors. Thus, the sum of the progress of the boxes and

triangles that make up these profiles will be within constant factors

of each other. □

Lemma 13. If A completes onM(t) then it completes onMUT (t).
If A doesn’t complete on M(t) then it also doesn’t complete on

MLT (t).

Proof. For the first statement: We prove this by induction.

Let A be the sequence of accesses a1,a2, . . . ,ay .
LetM(t) = □1 ◦ . . . ◦ □k . LetMUT (t)where ′

1
◦ ′

2
◦ . . . ◦ ′

k
and | ′i | = 2|□i |.

Assume A would complete access aj by the end of □i and A
would complete access aℓ by the end of

′
i . Further assume i ≤ ℓ.

Let aj′ be the access that A finishes by the end of □i+1. Let aℓ′
be the access that A finishes by the end of

′
i+1. □i+1 starts with

at most |□i+1 | cache lines in memory and can bring in at most

|□i+1 | new cache lines.
′
i+1 starts with zero cache lines in memory,

and can bring in 2|□i+1 | cache lines into memory. If j ′ > ℓ′ then
during □i+1 A completes more accesses in x cache misses with at

most x cache lines in memory at the start. However,
′
i+1 can do

any computation over 2x IOs, thus A run on
′
i+1 can compute

everything that A run on □i+1 computes. This is a contradiction.

Thus, if j ≤ ℓ then j ′ ≤ ℓ′.

Figure 7: A triangle contained in a box and a triangle containing a box. The box is shaded in light gray.

M(t)

MLT (t)

MUT (t)

Time

Time

Time

Figure 8: An example of a lower triangular profile and anupper triangular profile. The boxes from the profileM(t) are presented
with dashed lines on the corresponding upper and lower triangular profiles.

Base case: Before the start of the first boxes j = ℓ = 0. Thus, by

the end of □1 if A reaches aj and A gets to access aℓ by the end

of
′
1
then j ≤ ℓ.

For the second statement: Proof by contradiction, if A com-

pletes onMLT (t) then by memory monotonicity it must also com-

plete on M(t). However, by assumption it does not, thus A does

not complete onMLT (t). □

Lemma 14. IfA is adaptive on square profileM(t) then it is adaptive
onMUT (t) as well.

Proof. If A completes on M(t) then it completes on MUT (t)
and ρ(MUT (t)) = Θ(ρ(M(t))).

Thus, if A is adaptive onM(t) it continues to be non-adaptive.

□

Lemma 15. If A is adaptive on triangular profileMLT (t) then it is
adaptive onM(t) as well.

Proof. IfA completes onMLT (t) then it completes onM(t) and
ρ(M(t)) = Θ(ρ(MLT (t))).

Thus, ifA is adaptive onMLT (t) it continues to be non-adaptive.
□

The following theorem will allow us to use triangular profiles

when proving non-adaptivity and non-adaptivity in expectation.

Theorem 9. Let □n be a box of size n.
If A is non-adaptive on triangular profile T (t) then it is also non-

adaptive on the square profile TLS (t).

Proof. If A is non adaptive on T (t) then

ρ (T (t)) = ω (W) .

Furthermore, T (t) is the upper triangular profile of TLS (t) and thus

ρ (TLS (t)) = ω (W) .
Let us define i and j such that A completes on the ith triangle

ofT (t) andA completes on the jth square ofTLS (t). Then, because
T (t) is the upper triangular profile of TLS (t) we can use Lemma 13

to say that the finishing point of A is later in TLS (t) than in T (t).
So, we have that j ≥ i .

When A completes it makes Wn progress, but the available

potential progress in the boxes ofTLS (t) that it uses will be ω (Wn).
The algorithm will continue to be non-adaptive on this related

profile.

A distribution over triangular profiles can be connected to a dis-

tribution over square profiles by converting each triangular profile

intoMLT (t), a square profile. □

The following theorem will allow us to use triangular profiles

when proving results about algorithms being adaptive in expecta-

tion.

Theorem 10. Let D be a distribution over triangular profiles T (t).
IfA is adaptive in expectation over a distributionsD A is adaptive

over a distribution D ′, where D ′ is formed by taking every triangular
profile T (t) ∈ D and replacing it with TU S (t).

Proof. Note that the lower triangular profile of TU S (t) is T (t).
So, we can apply Theorem 9 to T (t) and TU S (t). Every adaptive

profile T (t) corresponds to an adaptive TU S (t). Additionally, every
non-adaptive profile T (t) corresponds to an non-adaptive TU S (t).
However, in addition to this, the optimal progress over every profile

T (t) andTU S (t) are the same up to constant factors. Thus, given an

algorithm run on T (t) and the same algorithm run on TU S (t) the
contribution to the expected optimal progress is within constant

factors. □

	Abstract
	1 Introduction
	2 Preliminaries
	3 What Bad Memory Profiles Look Like
	4 Technical Overview
	5 Related Work
	6 Conclusion
	References
	A Cache-adaptivity of Randomly Shuffled Profiles
	A.1 A Simplified Problem
	A.2 Proof of Theorem 5

	B Robustness of Worst-Case Profiles
	B.1 Box-size Perturbations
	B.2 Start Time Perturbations
	B.3 Box-order Perturbations

	C Pseudocode for MM-Scan
	D Proof of Theorem 4 and Lemma 4
	E Proof of the No-Catch-Up Lemma
	F Standardizing (a,b,c=1)-Regular Algorithms
	G Triangle Profiles

