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Abstract

Systems that require programs to share a cache such as shared-memory machines, multicore archi-
tectures, and time-sharing systems are ubiquitous in modern computing. Programs that share a cache
experience different levels of cache space throughout execution. Moreover, practitioners have observed
that the cache efficiency of an algorithm is often critical to its overall performance. If an algorithm is
optimally cache efficient in a fixed-size cache, its performance improves when it has more cache space.
Similarly, cache-adaptive algorithms use a dynamic cache optimally.

Despite the increasing popularity of shared-cache systems, the theoretical behavior of most algorithms
in the face of memory fluctuations is not yet well understood. There is a gap between our knowledge
about how algorithms perform in a fixed-size (static) cache versus a dynamic cache where the amount of
memory available to a program fluctuates.

Cache-adaptive analysis is a method of analyzing how well algorithms use a dynamic cache. Bender
et al. showed that optimal cache-adaptivity does not follow from cache-optimality in a static cache.
Specifically, they proved that some cache-optimal algorithms in a static cache are suboptimal when subject
to certain memory profiles (patterns of memory fluctuations). For example, the canonical cache-oblivious
divide-and-conquer formulation of Strassen’s algorithm for matrix multiplication is suboptimal in the
cache-adaptive model because it does a linear scan to add submatrices together.

In this paper, we introduce “scan hiding”, the first technique for converting a class of non-cache-
adaptive algorithms with linear scans to optimally cache-adaptive variants. We work through a concrete
example of scan hiding on Strassen’s algorithm, a subcubic algorithm for matrix multiplication that
involves linear scans at each level of its recursive structure. All currently known subcubic algorithms for
matrix multiplication include linear scans, however, so our technique applies to a large class of algorithms.

We also experimentally evaluated different algorithms in the face of memory fluctuations to explore
how theoretical analysis of cache-adaptivity manifests in practice. We experimentally compared two
cubic algorithms for matrix multiplication which are both cache-optimal when the memory size stays the
same, but diverge under cache-adaptive analysis. We also subjected three standard sorting algorithms
to memory fluctuations. Our findings suggest that memory fluctuations affect algorithms with the same
theoretical cache performance in a static cache differently. For example, the optimally cache-adaptive
naive matrix multiplication algorithm achieved fewer relative faults than the non-adaptive variant in
the face of changing memory size. Our experiments also suggest that the performance advantage of
cache-adaptive algorithms extends to more practical situations beyond the carefully-crafted memory
specifications in proofs of worst-case behavior.
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1 Introduction

Since multiple processors may compete for space in a shared cache on modern machines, the amount of
memory available to a single process may vary dynamically. Programs running on multicore architectures,
shared-memory machines, and time-shared machines often experience memory fluctuations. For example,
Dice, Marathe and Shavit [17] demonstrated that in practice, multiple threads running the same program will
each get a different amount of access to a shared cache.

Experimentalists have recognized the problem of changing memory size in large-scale scientific com-
puting and have developed heuristics [24, 25, 26] for allocation with empirical guarantees. Furthermore,
researchers have developed adaptive sorting and join algorithms [12, 22, 29, 30, 37, 38, 39] that perform well
empirically in environments with memory fluctuations. While most of these algorithms work well on average,
they may still suffer from poor worst-case performance [6, 7].

In this paper, we continue the study of algorithmic design of external-memory algorithms which perform
well in spite of memory fluctuations. Barve and Vitter [6, 7] initiated the theoretical analysis of such
algorithms. Bender et al. [10] later formulated the “cache-adaptive model” to formally study the effect of
such memory changes and analyzed specific “cache-adaptive” algorithms using this model. Cache-adaptive
algorithms use the cache optimally in the face of memory fluctuations. They then introduced techniques for
analyzing some classes of divide-and-conquer algorithms in the cache-adaptive model. We use “adaptive”
and “cache-adaptive” interchangeably throughout the rest of this paper.
Cache Analysis Without Changing Memory
Despite the reality of dynamic memory fluctuations, the majority of theoretical work on external-memory
computation [35, 36] assumes a fixed cache size M . In the external-memory model, algorithm performance
is determined by the number of I/Os, or fetches from external memory, that an algorithm takes to finish its
computation. Many I/O-efficient algorithms in the fixed-memory model suffer from poor performance when
M changes due to thrashing if the available memory drops.

Cache-oblivious algorithms [14, 18, 19] provide insight about how to design optimal algorithms in the
face of changing memory. Notably, cache-oblivious algorithms are not parameterized by the cache or cache
line size. Instead, they leverage their recursive algorithm structure to achieve cache-optimality under static
memory sizes. They are often more portable because they are not tuned for a specific architecture. Although
Bender et al. [9] showed that not all cache-oblivious algorithms are adaptive, many cache-oblivious algorithms
are in fact also cache-adaptive. Many cache-oblivious algorithms are also adaptive. The connections between
adaptivity obliviousness suggest that modifying the recursive structure of the non-adaptive cache-oblivious
algorithms may be the key to designing optimally cache-adaptive algorithms.

Algorithms designed for external memory efficiency may be especially affected by memory level changes
as they depend on memory locality. Such programs include external-memory algorithms, shared-memory
parallel programs, database joins and sorts, scientific computing applications, and large computations running
on shared hardware in cloud computing.

Practical approaches to alleviating I/O-latency constraints include techniques such as latency hiding.
Latency hiding [21, 33] is a technique that leverages computation time to hide I/O latency to improve overall
program performance. Since our model counts computation as free (i.e. it takes no time), we cannot use
latency hiding because it requires nonzero computation time.
Analysis of Cache-Adaptive Algorithms
Prior work took important steps toward closing the separation between the reality of machines with shared
caches and the large body of theoretical work on external-memory algorithms in a fixed cache. Existing tools
for design and analysis of external-memory algorithms that assume a fixed memory size often cannot cope
with the reality of changing memory.
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Barve and Vitter [6, 7] initiated the theoretical study of algorithms with memory fluctuations by extending
the disk-access machine (DAM) model to accommodate changes in cache size.

Specifically, they allow the memory size M to change and present complex but optimal algorithms for
sorting, FFT, matrix multiplication, LU decomposition, permutation, and buffer trees. Their work proves
the existence of optimal algorithms in spite of memory changes but lacks a framework for finding such
algorithms.

Bender et al. [10] continued the theoretical study of external-memory algorithms in the face of fluctuating
cache sizes. They formalized the “cache-adaptive model”, which allows memory to change more frequently
and dramatically than Barve and Vitter’s model, and introduced “memory profiles”, which define sequences
of memory fluctuations.

They showed that some (but not all) optimal cache-oblivious algorithms are optimal in the cache-
adaptive model. At a high level, an algorithm is “optimal” in the cache-adaptive model if it performs
well under all memory profiles. Specifically, if a recursive cache-oblivious algorithm fits in the form
T (n) = aT (n/b) + O(1), it is optimally cache-adaptive. They also showed that lazy funnel sort [11]
is optimally cache-adaptive and does not fit into the given form. Despite the close connection between
cache-obliviousness and cache-adaptivity, they show that neither external-memory optimality nor cache-
obliviousness is necessary or sufficient for cache-adaptivity. The connections and differences between
cache-oblivious and cache-adaptive algorithms suggest that cache-adaptive algorithms may one day be as
widely used and well-studied as cache-oblivious algorithms.

In follow-up work, Bender et al. [9] gave a more complete framework for designing and analyzing
cache-adaptive algorithms. Specifically, they completely characterize when a linear-space-complexity Master-
method-style or mutually recursive linear-space-complexity Akra-Bazzi-style algorithm is optimal in the
cache-adaptive model. For example, the in-place recursive naive1 cache-oblivious matrix multiplication
algorithm is optimally cache-adaptive, while the naive cache-oblivious matrix multiplication that does the
additions upfront (and not in-place) is not optimally cache-adaptive. They provide a toolkit for the analysis
and design of cache-oblivious algorithms in certain recursive forms and show how to determine if an algorithm
in a certain recursive form is optimally cache-adaptive and if not, to determine how far it is from optimal.

Although these results take important steps in cache-adaptive analysis, open questions remain. The main
contribution of Bender et al. [9] was an algorithmic toolkit for recursive algorithms in specific forms. At a
high level, cache-oblivious algorithms that have long (ω(1) block transfers) scans2 (such as the not-in-place
n3 matrix multiplication algorithm) in addition to their recursive calls are not immediately cache-adaptive.
However, there exists an in-place, optimally cache-adaptive version of naive matrix multiplication. Is there
a way to transform other algorithms that do ω(n/B) block transfers at each recursive call (where B is the
cache line size in words), such as Strassen’s algorithm [32], into optimally cache-adaptive algorithms? Our
scan-hiding technique answers this question for Strassen and other similar algorithms. Furthermore, Bender
et al. [10] gave a worst-case analysis in which the non-adaptive naive matrix multiplication is a Θ(lgN)
factor off from optimal. Does the predicted slow down manifest in reality? We begin to answer this question
via experimental results in this paper.

Contributions
The contributions of this paper are twofold:

First, we develop a new technique called scan-hiding for making a certain class of non-cache-adaptive
algorithms adaptive and use it to construct a cache-adaptive version of Strassen’s algorithm for matrix
multiplication in Section 4. Strassen’s algorithm involves linear scans in its recurrence, which makes the
algorithm as described non-adaptive via a theorem from Bender et al. [9]. We generalize this technique to

1We use “naive” matrix multiplication to refer to the O(n3) work algorithm for matrix multiplication.
2That is, the recurrence for their cache complexity has the form T (n) = aT (n/b) + Ω(n/B) where B is the cache line size in

words.
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many algorithms which have recurrences of the form T (n) = aT (n/b) + O(nc) in Section 3. This is the
first framework in the cache-adaptive setting to transform non-adaptive algorithms into adaptive algorithms.

Next, we empirically evaluate the performance of various algorithms when subject to memory fluctuations
in Section 5. Specifically, we compared cache-adaptive and non-adaptive naive matrix multiplication.

We also tested cache-oblivious funnel sort [28], stxxl::sort from STXXL [15] and std::sort [?
] from the C++ standard library and report our results in Appendix B.

Our results suggest that algorithms that are “more adaptive” (i.e. closer to optimal cache-adaptivity) are
more robust under memory changes. Moreover, we observe performance differences even when memory
sizes do not change adversarially.

2 Preliminaries

In this section we introduce the disk-access model (DAM) [4] for analyzing algorithms in a static cache. We
review how to extend the disk-access model to the cache-adaptive model [10] with changing memory. Finally,
this section formalizes mathematical preliminaries from [9] required to analyze scan-hiding techniques.

Disk-Access Model
Aggarwal and Vitter [4] first introduced the disk-access model for analyzing algorithms in a fixed-size
cache. This model describes I/O limited algorithms on single processor machines. Memory can reside in
an arbitrarily large, but slow disk, or in a fast cache of size M . The disk and cache are divided into cache
lines of size B (in bytes). Access to memory in the cache and operations on the CPU are free. If the desired
memory is not in cache, however, a cache miss occurs at a cost of one unit of time. A line is evicted from the
cache and the desired line is moved into cache in its place. We measure algorithm performance in this model
by counting up the number of cache-line transfers. That is, algorithms are judged based on their performance
with respect to B and M . Furthermore, we differentiate between algorithms which are parameterized by B
or M , called cache-aware, and those which do not make use of the values of the cache or line size, called
cache-oblivious [18].

The cache-adaptive model [9, 10] extends the disk-access model to accommodate for changes in cache
size over time. Since we use the cache-adaptive model and the same definitions for cache-adaptivity, we
repeat the relevant definitions in this section.

Cache-Adaptive Analysis
First, we will give a casual overview of how to do cache-adaptive analysis. This is meant to help guide the
reader through the array of technical definitions that follow in this section, or perhaps to give enough sense of
the definitions that one may follow the ideas, if not the details, in the rest of the paper. For a more thorough
treatment of this topic, please see the paper Cache-Adaptive Analysis [9].

In general, we want to examine how well an algorithm is able to cope with a memory size which changes
with time. We consider an algorithm A good, or “optimally cache-adaptive” if it manages to be constant-
competitive with the same algorithm A∗ whose scheduler was given knowledge of the memory profile ahead
of time .

To give our non-omniscient algorithm a fighting chance we also allow speed-augmentation where A gets
to perform a constant number of I/Os in a given time step, whereas A∗ still runs at one I/O per time step.

To prove an algorithm is cache-adaptive, we instead show it has a stronger condition called optimally
progressing. An optimally progressing algorithm has some measure of “progress” it has made, and it is
constantly accomplishing a sufficient amount of progress. The “progress bound” does not have to resemble
any sort of real work being done by the algorithm, but has more general constraints and can be thought of
more as an abstraction that amortizes what A is accomplishing. We pick our progress bound to be an upper
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bound on our optimally scheduled algorithm and then show that our (speed-augmented) algorithm always
accomplishes at least as much progress as A∗.

Small slices of time or strangely-shaped cache sizes often make analyzing algorithms difficult in the
cache-adaptive model. For simplicity, we instead consider square profiles, which are memory profiles that
stay at the same size for a number of time steps equal to their size. Thus, when we look at a plot of these
profiles, they look like a sequence of squares. There are two important square profiles for each given memory
profile M : one that upper bounds and another that lower bounds the progress A can accomplish in M . Bender
et al. [9] showed that these square profiles closely approximate the exact memory profile.

In short, proving an algorithm is cache-adaptive involves:

1. Picking a “progress function” (Definition 9) to represent work done by our algorithms.

2. Upper bound the progress A∗ can make in a square of memory by a progress bound (Definition 13).

3. Show that a speed-augmented version of A can make at least as much progress as A∗ given the same
square of memory.

Achieving Cache-Optimality on any Memory Profile
Since the running time of an algorithm is dependent on the pattern of memory size changes during its
execution, we turn to competitive analysis to find “good” algorithms that are close to an optimal algorithm
that knows the future set of memory changes. We will now formalize what makes an algorithm “good” and
how to analyze algorithms in spite of cache fluctuations.

Definition 1 (Memory Profile) A memory profile M is a sequence (or concatenation) of memory size
changes. We represent M as an ordered list of of natural numbers (M ∈ N∗) where M(t) is the value of the
cache size (in words) after the t-th cache miss during the algorithm’s execution. We use m(t) to denote the
number of cache lines at time t of memory profile M (i.e. m(t) = M(t)/B).

The size of the cache is required to stay in integral multiples of the cache line size.

In general, an optimal algorithm A∗ takes at most a constant factor of time longer than any other algorithm
A for a given problem on any given memory profile. Since a memory profile might be carefully constructed
to drop almost all of its memory after some specific algorithm finishes, we allow the further relaxation that an
optimal algorithm may be speed augmented. This relaxation allows an algorithm to complete multiple I/Os
during one time step, and can be thought of in a similar manner to the memory augmentation allowed during
the analysis of Least Recently Used. Speed augmentation relates to running lower latency memory access.
Since memory augmentation (giving an online algorithm more space as described in Definition 3) is a key
technique in the analysis of cache-oblivious algorithms, speed augmentation is an important tool for proving
algorithms optimal in the cache-adaptive model.

We now formally define these notions of augmentation.

Definition 2 (Speed Augmentation [10]) Let A be an algorithm. We use A′ to denote the c-speed aug-
mented version of A that performs c I/Os in each step of the memory profile.

Bender et al. [9] extended the notions of memory augmentation and the tall-cache assumption, common
tools in the analysis of cache-oblivious algorithms, to the cache-adaptive model. The tall-cache assumption
specifies that M must be a certain size in terms of B, ensuring there are enough distinct cache lines in the
cache for certain algorithms.

We assume page replacement is done according to a least-recently-used policy, which incurs at most
a constant factor more page faults (and therefore I/Os) more than an optimal algorithm [8] under constant
space-augmentation [31].
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Definition 3 (Memory Augmentation [10]) For any memory profile m, we define a c-memory augmented
version of m as the profile m′(t) = cm(t). Running an algorithm A with c-memory augmentation on the
profile m means running A on the c-memory augmented profile of m.

Definition 4 (H-tall [9]) In the cache-adaptive model, we say that a memory profile M is H-tall if for all
t ≥ 0, M(t) ≥ H ·B (where H is measured in lines).

Definition 5 (Memory Monotone [9]) A memory monotone algorithm runs at most a constant factor slower
when given more memory.

Intuitively, an optimally cache-adaptive algorithm for a problem P does as well as any other algorithm
for P given constant speed augmentation.

Definition 6 (Optimally Cache-adaptive [10]) An algorithm A that solves problem P is optimal in the
cache-adaptive model if there exists a constant c such that on all memory profiles and all sufficiently large
input sizes N , the worst-case running time of a c-speed-augmented A is no worse than the worst-case running
time of any other (non-augmented) memory-monotone algorithm.

Notably, this definition of optimal allows algorithms to query the memory profile at any point in time
but not to query future memory sizes. Optimally cache-adaptive algorithms are robust under any memory
profile in that they perform asymptotically (within constant factors) as well as algorithms that know the entire
memory profile.

Approximating Arbitrary Memory Profiles with Square Profiles
Since memory size may change at any time in arbitrary memory profiles, Bender et al. [10] introduced
square profiles to approximate the memory during any memory profile and simplify algorithm analysis in the
cache-adaptive model. Square profiles are profiles where the memory size stays constant for a time range
proportional to the size of the memory.

Definition 7 (Square Profile [10]) A memory profile M or m is a square profile if there exist boundaries
0 = t0 < t1 < . . . such that for all t ∈ [ti, ti+1), m(t) = ti+1 − ti. In other words, a square memory profile
is a step function where each step is exactly as long as it is tall. Let □M(t) and □m(t) denote a square of M
and m, respectively, of size M(t) by M(t) words and m(t) and m(t) lines, respectively.

Definition 8 (Inner Square Profile [10]) For a memory profile m, the inner square boundaries t0 < t1 <
t2 < . . . of m are defined as follows: Let t0 = 0. Recursively define ti+1 as the largest integer such that
ti+1 − ti ≤ m(t) for all t ∈ [ti, ti+1).

Bender et al. [10] showed that for all timesteps t, the size of inner square profile m′ is at most a constant
factor smaller than the size of the original memory profile m. If an algorithm is optimal on all square profiles,
it is therefore optimal on all arbitrary profiles. Cache-adaptive analysis uses inner square profiles because
they are easier to analyze than arbitrary profiles and closely approximate any memory profile. Figure 1
shows an example of a memory profile and its inner and outer square profiles.

Lemma 1 (Square Profile Usability [10]) Let m be a memory profile where m(t+ 1) ≤ m(t) + 1 for all t.
Let t0 < t1 < . . . be the inner square boundaries of m, and m′ be the inner square profile of m.

1. For all t, m′(t) ≤ m(t).

2. For all i, m′(ti+1) ≤ 2m′(ti).

3. For all i and t ∈ [ti+1, ti+2), m(t) ≤ 4(ti+1 − ti).
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Figure 1: A memory profile m and its inner and outer square profiles. The red curving line represents the memory
profile m, the grey dashed boxes represent the associated inner square profile, the dotted lines represent the outer square
profile (as defined in [10]).

Optimally Progressing Algorithms are Optimally Cache-Adaptive
We show an algorithm is optimally cache-adaptive by showing a stronger property: that it is “optimally
progressing”. The progress of an algorithm is the number of cache accesses that occurred during a time
interval. (In other words, we assume the algorithm makes one unit of progress per cache access.)

Intuitively, an optimally progressing algorithm has some notion of work it needs to accomplish to solve
the given problem, and for any given interval of the memory profile that algorithm does within a constant
factor as much work as the optimal algorithm would. An optimally progressing algorithm is optimally
cache-adaptive [9].

To show an algorithm is optimal in the DAM model, we require an upper and lower bound on the progress
any algorithm can make for its given problem. Let P be a problem. A “progress bound” ρP(M(t)) or
ρP(m(t)) is an upper bound on the amount of progress any algorithm can make on problem P given memory
profiles M or m with M(t) or m(t) cache size at time t, respectively. ρP(M(t)) and ρP(m(t)) are defined
in terms of number of words and number of cache lines, respectively. We use a progress-requirement function
to bound from below the progress any algorithm must be able to make. A progress requirement function
RP(N) is a lower bound on the amount of progress an algorithm must make to be able to solve all instances
of P of size at most N .

We combine square profiles with progress bounds to show algorithms are optimally progressing in the
cache-adaptive model. Cache-adaptive analysis with square profiles is easier than reasoning about arbitrary
profiles because square profiles ensure that memory size stays constant for some time. Since the performance
of an algorithm on an inner square profile is close enough to its performance on the original memory profile,
we use inner square profiles in our progress-based analysis.

Finally, we formalize notions of progress over changing memory sizes. At a high level, we define progress
of an algorithm A on an inner square profile □M such that the sum of the progress of A over all of the squares
of □M is within a constant factor of the total progress of A on M . We call our progress function over a single
square of square profile M and m, ϕA(□M ) or ϕA(□m) since by definition a single square profile gives a
cache size and our progress function ϕA takes as input a cache size.

7



Definition 9 (Progress Function [9]) Given an algorithm A, a progress function ϕA(M(t)) and ϕA(m(t))
defined for A is the amount of progress that A can make given M(t) words or m(t) lines. We define the
progress function given as input a memory profile M and m as ΦA(M) and ΦA(m) and it provides the
amount of progress A can make on a given profile M and m, respectively.

Let M1∥M2 indicate concatenation of profiles M1 and M2.

Definition 10 ([9]) Let M and U be any two profiles of finite duration. The duration of a profile M is the
length of the ordered list representing M . Furthermore, let M1∥M2 indicate concatenation of profiles M1 and
M2. We say that M is smaller than U , M ≺ U , if there exist profiles L1, L2 . . . Lk and U0, U1, U2 . . . Uk,
such that M = L1∥L2 . . . ∥Lk and U = U0∥U1∥U2 . . . ∥Uk, and for each 1 ≤ i ≤ k,

1. If di is the duration of Li, Ui has duration ≥ di, and

2. as standalone profiles, Li is always below Ui (Li(t) ≤ Ui(t) for all t ≤ di).

Definition 11 (Monotonically Increasing Profiles [9]) A function f : N∗ → N which takes as its input a
memory profile M is monotonically increasing if for any profiles M and U , M ≺ U implies f(M) ≤ f(U).

Definition 12 (Square Additive [9]) A monotonically increasing function f : N∗ → N which takes as its
input a single square □M of a square profile M is square-additive if

1. f(□M ) is bounded by a polynomial in M ,

2. f(□M1 ∥ · · · ∥□Mk
) = Θ(

∑k
i=1 f(□Mi)).

Progress Bounds
We now formally define progress bounds in the cache-adaptive model and show how to use progress bounds
to prove algorithms are optimally cache-adaptive. Given a memory profile M , a progress bound ρP(M(t))
or ρP(m(t)) is a function that takes a cache size M(t) or m(t) and outputs the amount of progress any
algorithm could possibly achieve on that cache size.

Definition 13 (Progress Bound [9]) A problem P of size N has a progress bound if there exists a mono-
tonically increasing polynomial-bounded progress-requirement function R : N → N and a square-additive
progress limit function PP : N∗ → N such that: For any profile M or m, if PP(M) < RP(N), then no
memory-monotone algorithm running under profile M can solve all N . Let ρP(M(t)) and ρP(m(t)) for a
problem P be a function ρP : N → N that provides an upper bound on the amount of progress any algorithm
can make on problem P given cache sizes M(t) and m(t). We also refer to both ρP and PP as the progress
bound (although they are defined for different types of inputs).

Throughout this paper, for purposes of clarity (when talking about a square profile), when we write
ρP(□M(t)) or ρP(□m(t)), we mean ρP(M(t)) and ρP(m(t))).

Furthermore, we limit our analysis to “usable” memory profiles. If the cache size increases faster than an
algorithm can pull lines into memory, then some of that cache is inaccessible and cannot be utilized. Thus we
consider usable memory profiles.

Definition 14 (Usable Profiles [10]) An h-tall memory profile m is usable if m(0) = h(B) and if m in-
creases by at most 1 block per time step, i.e. m(t+ 1) ≤ m(t) + 1 for all t.
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Next, we formalize “feasible” and “fitting” profiles to characterize how long it takes algorithms complete
on various memory profiles.

Definition 15 (Fitting and Feasibility [9]) For an algorithm A and problem instance I we say a profile M
of length ℓ is I-fitting for A if A requires exactly ℓ time steps to process input I on profile M . A profile M is
N -feasible for A if A, given profile M , can complete its execution on all instances of size N . We further say
that M is N -fitting for A if it is N -feasible and there exists at least one instance I of size N for which M is
I-fitting. (When A is understood, we will simply say that M is N -feasible, N -fitting, etc.)

We now have the necessary language to formally define optimally progressing algorithms. Intuitively,
optimally progressing algorithms do about as well as any other algorithm for the same problem regardless of
the memory profile.

Definition 16 (Optimally Progressing [9]) For an algorithm A that solves problem P , integer N , and
N -feasible profile M(t), let MN (t) denote the N -fitting prefix of M . We say that algorithm A with tall-
cache requirement H is optimally progressing with respect to a progress bound PP (or simply optimally
progressing if PP is understood) if, for every integer N and N -feasible H-tall usable profile M , PP(MN ) =
O(RP(N)). We say that A is optimally progressing in the DAM model if, for every integer N and every
constant H-tall profile M , PP(MN ) = O(RP(N)).

Bender et al. [9] showed that optimally progressing algorithms are optimally cache-adaptive.

Lemma 2 (Optimally Progressing Implies Adaptivity [9]) If an algorithm A is optimally progressing,
then it is optimally cache adaptive.

Cache-adaptivity of Recursive Algorithms
We focus on recursive algorithms which decompose into sections which are somewhat cache intensive and
linear scans in Section 3.

Definition 17 (Linear Scans) Let f(n) be a function of an input size n. A linear scan of size O(f(n)) is a
sequence of operations which sequentially accesses groups of memory which are O(B) in size and performs
O(B) (and at least one) operations on each group before accessing the next group.

Finally, [9] analyzes recursive algorithms analogous to those in the Master Theorem. We use the following
theorem about (a, b, c)-regular algorithms.

Definition 18 ((a, b, c)-regular [9]) Let a ≥ 1/b, 0 < b < 1, and 0 ≤ c ≤ 1 be constants. A linear-space
algorithm is (a, b, c)-regular if, for inputs of sufficiently large size N , it makes

(i) exactly (a) recursive calls on subproblems of size (N/b), and

(ii) Θ(1) linear scans before, between, or after recursive calls, where the size of the biggest scan is Θ(N c).

Finally, we specify which algorithms we can apply our “scan-hiding” technique to. Scan-hiding generates
optimally-adaptive algorithms from non-optimally-adaptive recursive algorithms with linear (or sublinear)
scans. We can apply scan-hiding to (a, b, c)-scan regular algorithms.

Definition 19 ((a, b, c)-scan regular [9]) Let a ≥ 1/b, 0 < b < 1, and C ≥ 1 be constants. A linear-space
algorithm is (a, b, c)-scan regular if, for inputs of sufficiently large size N , it makes
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1. exactly a recursive calls on subproblems of size N/b, and

2. Θ(1) linear scans before, between, or after recursive calls, where the size of the biggest scan is Θ(NC)
where logb(a) > C.

Finally, we restate a theorem due to Bender et al. that determines which algorithms are immediately
optimal and how far non-optimal algorithms are from optimal algorithms.

Theorem 3 ((a, b, c)-regular optimality [9]) Suppose A is an (a, b, c)-regular algorithm with tall-cache
requirement H(B) and linear space complexity. Suppose also that, in the DAM model, A is optimally
progressing for a problem with progress function ϕA(□N ) = Θ(Np), for constant p. Assume B ≥ 4. Let
λ = max{H(B), ((1 + ε)B log1/bB)1+ε)}, where ε > 0.

1. If c < 1, then A is optimally progressing and optimally cache-adaptive among all λ-tall profiles.

2. If c = 1, then A is Θ
(
lg1/b

N
λ

)
away from being optimally progressing and O

(
lg1/b

N
λ

)
away from

being optimally cache-adaptive.

3 Generalized Scan Hiding

In this section, we present a generalized framework for converting non-adaptive algorithms into adaptive
algorithms via “scan hiding”. Our generalized scan-hiding procedure can be applied to Master-Theorem-style
recursive algorithms that contain “independent” linear scans in each level of the recursion.

At a high level, scan hiding breaks up long (up to linear) scans at each level of a recursive algorithm and
distributes the pieces evenly throughout the entire algorithm execution. We define a recursion tree as the
tree created from a recursive algorithm A such that each node of the tree contains all necessary subprocesses
for the subproblem defined by that node. Figure 2 shows an example of scan hiding on the recursion
tree for Strassen’s algorithm. Each node of the Strassen recursion tree contains a set of scans and matrix
multiplication operations as its subprocesses.

We now formalize our generalized scan-hiding technique. We apply scan hiding to Strassen’s algorithm
in Section 4 as a case study of our technique.

More specifically, we can generate adaptive algorithms from non-adaptive “scan-hideable algorithms”.

Definition 20 (Scan-hideable Algorithms) We can apply scan hiding to non-adaptive algorithms with the
following characteristics to convert them to adaptive algorithms:

• Let the input size be nC . For most functions C = 1, however, for dense graphs and matrices C = 2.

• A is a (a, b, c)-scan regular algorithm and has a runtime that can be computed as a function that
follows the Master Theorem style equations of the form T (n) = aT (n/b) +O(nC) in the DAM model
where logb(a) > C for some constants a > 0, b ≥ 1, and C ≥ 1.

• In terms of I/Os, the base case of A is T (M) = M
B where M is the cache size.

• We define work to be the amount of computation in words performed in a square profile of size m by
m by some subprocess of A. A subprocess is more work consuming if it uses more work in a square
profile of size m by m. For example, a naive matrix multiplication subprocess is more work consuming
than a scan since it uses (mB)log2 3 work as opposed to a scan which uses mB work. At each level
a linear scan is performed in conjunction with a more work consuming subprocess (in the case of
Strassen, for example, the linear scan is performed in conjunction with the more work consuming
matrix multiplication).
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• Each of the more work consuming subprocesses in each node of the recursion tree only depends on the
the results of the scans performed in the subtrees to the left of the path from the current node to the
root.

• If each node’s scans depend on the result of the subprocesses of the ancestors (including the parent) of
the current node in the computational DAG of the algorithm.

Our scan hiding technique involves hiding all scans “inside” the recursive structure in subcalls. If an
algorithm (e.g. Strassen) requires an initial linear scan for even the first subcall, we cannot hide the first scan
in recursive subcalls. Therefore, we show that an algorithm A is optimally progressing even if A having
an initial scan of O(nC) length. We will be using Ascan_hiding as the name for the algorithm using this scan
hiding technique.

Lemma 4 If the following are true:

• The optimal A algorithm in the DAM model (i.e. ignoring wasted time due to scans) takes total work
nlgb(a) and respects the progress bound ρ(m(t)) = d0(m(t)B)logb(a)/C where d0 is a constant greater
than 0. Let m be a profile that starts at time step 0 and ends at time step T where the optimal A
algorithm completes.

• Let us assign potential in integer units to accesses, much as we do for work.

• Ascan_hiding is an algorithm which computes the solution to the problem and has total work d1n
lgb(a)

and has total potential d2nlgb(a) and completes c3(mB)logb(a)/C work and potential in any m by m
square profile where d1, d2 and d3 are all constants greater than 0 and where mB < nC .

• Finally, Ascan_hiding must also have the property that if the total work plus potential completed is
(d1 + d2)n

lgb(a), Ascan_hiding is guaranteed to have finished its last access.

Then Ascan_hiding is cache-adaptive.

PROOF. Let m′(t) be the inner square profile of m(t). When nC < m′(t)B the entirety of A completes and
Ascan_hiding will complete given a constant factor expansion.

The optimal A algorithm in the worst case makes a constant factor d4 ≥ 1 less progress on the inner
profile for some constant d4.

With time augmentation 1
d3·d4 , Ascan_hiding completes as much progress on this square as A did in the

associated part of the profile, so over the entire profile Ascan_hiding completes at least nlgb(a) work and
potential. With time augmentation d1·d2

d3·d4 , Ascan_hiding completes at least (d1 + d2)n
lgb(a) work and potential.

Thus Ascan_hiding must have completed.
Finally, we prove that algorithm A is optimally progressing. Specifically, we show that any algorithm A

with running time of the form T (n) = aT (n/b)+O(nC) and with the characteristics specified in Definition 20
is optimally progressing,

Theorem 5 Given an algorithm A with running time of the form T (n) = aT (n/b) + O(nC) and with
the characteristics as specified in Definition 20, then A is optimally progressing with progress bound

ρ(m(t)) = (m(t)B)
logb(a)

C . To manage all the pointers we also require m(t) ≥ logb n for all t.

PROOF. For this proof, we charge all writeouts to read-ins; therefore, we do not specifically argue the
cache-adaptivity of the writeouts of our algorithm. Given any recursive algorithm that admits a recursive
runtime equation that has the form T (n) = aT (n/b) +O(nC) in the DAM model, the required amount of
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work by the algorithm is O
(
nlogb(a)

)
and an optimally progressing algorithm performs Ω

(
(mB)

logb(a)

C

)
work for each inner square with side length m in the inner square profile of the usable profile.

We assume by the conditions of algorithms that fall under our framework that we must first perform
a scan of size O(nC) as preprocessing. We show that the amount of total potential during the time the
scan is performed does not exceed O

(
nlogb(a)

)
. Then, by Lemma 4, we know that A is still optimally

progressing. We assign O(nlogb(a)−C) potential to each of the O(nC) scans; thus for each scan we complete

Ω
(
nlogb(a)−CmB

)
= Ω

(
(mB)

logb(a)

C

)
progress, as long as m < nC .

Scan hiding intersperses the scans with the more work consuming processes associated with the other

parts of the algorithm A resulting in Ω
(
(mB)

logb(a)

C

)
work to be done at each level of the recursion in any

m by m square where at least half of the cache misses are used to perform this work. We present an example
of scan hiding on Strassen’s algorithm in Appendix A.

In a recursive call solving a subproblem of size s this subproblem will be responsible for a scan of length
at most O(s + logb(n)). Amortized each scan is of length O(s), however, if pointers are passed around
naively one may deal with the additive O(logb(n)) scan for some particular problem. The condition that
m(t) ≥ logb n allows for naive splits of the sizes of scans to be acceptable by making the additive factor
logb(n) at most a factor of 2 of the size of the solved problem.

Thus, algorithm A is optimally progressing.

Since scan hiding amortizes the work of part of scan against each leaf node of the recursion tree, each leaf
node must be sufficiently large to hide part of a scan. Therefore, we insist that m(t) ≥ logb n. Note that given
a specific problem one can usually find a way to split the scans such that this requirement is unnecessary. For
general scan hiding, however, we use this minimum cache size to make passing pointers to scans easy and
inexpensive.

As an immediate consequence of Theorem 5 above, we get the following corollary.

Corollary 6 Given an algorithm A with running time of the form T (N) = aT (N/b) +O(N) and with the
characteristics as specified in Definition 20, A is cache-adaptive. If a node’s subprocesses depend on the
scans of the nodes in the left subtree, then we also require m(t) ≥ log n.

Scan hiding directly broadens Theorem 7.3 in [9] to show cache-adaptivity for a specific subclass of
Master Theorem style problems when logb(a) > C.

4 Scan Hiding in Strassen’s Algorithm

In this section, we apply scan hiding to Strassen’s algorithm for matrix multiplication to produce an optimally
cache-adaptive variant of Strassen from the classic non-optimal version. We call our modified adaptive
version of Strassen AdaptiveStrassen. We sketch how to spread the scans out throughout the algorithm’s
recursive structure and show that our technique results in an optimally adaptive algorithm. For more details,
pseudocode of the algorithm, and exact proofs of optimality, see Appendix A.

Currently the most efficient matrix multiplication algorithms in practice for very large matrices use the
Strassen algorithm [? ? ]. For example, the GNU Multi-Precision Library uses Strassen to perform matrix
multiplication for decimal digits in the range 10, 000 to 40, 000, and the Java uses its Strassen implementation
for above 74, 000 decimal digits. Previous work has shown that naive matrix multiplication that combines
results at the end in a matrix addition is not cache-adaptive, but that it can be altered to be cache-adaptive by
doing all the work in place [10].

In the classical Strassen algorithm, each recursive call begins with an addition of matrices and ends with
an addition of matrices (see Appendix A for a discussion of Strassen in the RAM model). Doing this work in
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place still leaves a recurrence of T (n) = 7T (n/2) + O(n2), which is not optimally progressing. Each of
these sums relies on the sums the parent computed. In naive cubic matrix multiplication, the input to each
leaf in the recurrence tree can be read off of the original matrix. In Strassen’s algorithm, however, the input
to each recursive subcall is generated by alterning the input from its parent. Specifically, the input at each
level is the result of the multiplication of one submatrix and the sum of two submatrices. To produce the
input for a sub-problem generated by Strassen of size 1 by 1, one would need to read off n values from the
original matrix, resulting in a runtime of O(nlg(7)+1). The inplace approach therefore does not work because
it introduces too much work at each leaf. We describe an adaptive version of Strassen via scan hiding.

Adaptive Strassen is Optimally Progressing
We will now describe the high level idea of AdaptiveStrassen.

The primary issue with naive Strassen3 is the constraint that many of the summations in the algorithm
must be computed before the next recursive call, leading to long blocks of cache-inefficient computation.
The main insight behind our adaptive Strassen is that all of these summations do not need to be executed
immediately prior to the recursive call that takes their result as input. We are thus able to spread out these
calculations among other steps of the algorithm making its execution more “homogeneous”.

Our algorithm requires an awareness of the size of the cache line B, though it can be oblivious to the size
of the cache (m(t) or M(t)). We further require that the number of cache lines in m(t) be at least lg(n) at
any time (m(t) = Ω(lg(n))).

To begin, the algorithm takes as input a pointer to input matrices X and Y . We are also given the side
length of the matrix n and a pointer pZ to the location to write X × Y .

We will create a set of arrays which will keep track of the pre-computed sums of matrices for input and
an array to keep track of the post-computed sums of matrices for the output.

AdaptiveStrassen starts and ends with scans of length O(n2), which are small enough to still allow
for adaptivity.

AdaptiveStrassen spreads the remaining sums evenly across sub-problems of size Ω(
√
lg(n)B).

Intuitively, by spreading out our scans we avoid large stretches where we cannot use the large amount of
memory as memory grows. More concretely, it lets us guarantee that in any box larger than lg(n)B we solve
a problem that uses up at least a constant factor fraction of the memory allotted by the square.

We call the leftmost path of a node to be that node’s left child and its left child downward until a leaf is
reached. Similarly a rightmost path of a node is the path formed by all the right children from a node and
its right decedents. In order to compute a sum at level i of the recursion, we must have saved its parent’s
sum from level i− 1 of the recursion. Therefore, AdaptiveStrassen first computes all the scans in the
leftmost path from the root of the recursion tree as inputs to the following subcalls.

At a high level, scan hiding “homogenizes” the long linear scans at the beginning of each recursive call
across the entire algorithm. We will precompute each node’s matrix sum by having an earlier sibling do this
summation spread throughout its execution. Figure 2 shows an example of how to spread out the summations.
We need to do some extra work to keep track of this precomputation, however. Specifically, we need to read
in O(lg(n)) bits and possibly incur O(lg(n)) cache misses. AdaptiveStrassen is optimally progressing
as long as M(t) = Ω(lg(n)B).

We hide all “internal” scans throughout the algorithm and do the first scan required for the first recursive
call of Strassen upfront. The first recursive call of Strassen does the precomputation and set up of O(n2)
sized scans as well as the post-computation for the output which also consists of O(n2) scans.

This algorithm is described in Algorithm 2. We sketch the recursion tree of AdaptiveStrassen
in Figure 2.

3We use naive Strassen to denote the canonical Strassen implementation that does scans at each node of the recursion tree.
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Figure 2: A sketch of scan hiding in Strassen’s algorithm. The purple squares represent the scans on the rightmost path
of the root. The orange squares represent the rightmost path of the second child of root. The scans represented in orange
will be completed before the recursive call for B is made. The scans will be completed by the leaf nodes under A. We
represent the look-ahead computations as the small squares in the rectangle labeled “Computations ahead of time”.

We use an array P to precompute and store the sums needed for the input to the leftmost paths and the
output sums needed for rightmost paths. P stores pointers to the lg(n) arrays which point to the arrays
responsible for rightmost and leftmost paths of nodes at each of the lg(n) levels. (Note that there can be only
one leftmost path from a node at level L being actively read from and only one that can be actively written
to.)

Next, we will show that AdaptiveStrassen is adaptive using a potential argument to bound the
non-optimality of AdaptiveStrassen on any profile. Given a memory profile M , we assign progress
plus work in each square of M of a such that the total progress plus work done over the execution is O(nlg(7)),
and on any m(t) by m(t) block of execution Ω((mB)lg(7)) progress plus work are completed.

AdaptiveStrassen takes O(nlg(7)) time in the word-RAM model by Lemma 12.

Theorem 7 Let X,Y be two matrices of size n2 (side length n). Adaptive Strassen is optimally cache
adaptive over all memory profiles m when m(t) > lg(n) ∀t and the algorithm is aware of the size of the
cache line size B with respect to the progress function ρ(m(t)) = (m(t)B)lg(7)/2.

PROOF.
We can apply Theorem 5 where a = 7 and b = 4 because the Strassen recurrence is T (N) = 7T (N/4) +

O(N) when N = n2.
The proof of adaptivity relies on two main accounting Lemmas: one for the O(n2) linear scan, and one

for analyzing the recursive subcalls. Intuitively, the initial and final linear scans maintain adaptivity because:
any algorithm with input size n2 which reads its entire input must take n2/B time. Therefore, a scan of size
n2 must take less time than running an algorithm with the recurrence T (N) = 7T (N/4) +O(1) where N is
the input size. We provide the full proof of adaptivity in

Or for concreteness we can apply Lemma 9 to both Lemma 10 and Lemma 11. Lemma 10 and Lemma 11
show that every m(t)×m(t) box completes Ω((mB)lg2(7)) work plus progress with total assigned progress
O(nlg2(7)). Thus, AdaptiveStrassen is cache adaptive by Lemma 9.

5 Experimental Results

We compare the faults and runtime of MM-Scan and MM-Inplace as described in [9] in the face of
memory fluctuations. MM-Inplace is the in-place divide-and-conquer naive multiplication algorithm, while
MM-Scan is not in place and does a scan at the end of each recursive call. MM-Inplace is cache adaptive
while MM-Scan is not. We also empirically evaluate external-memory sorting algorithms in Appendix B.

Furthermore, we also compare the performance of different external memory sorting algorithms under
memory changes.
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We test various algorithms and measure their faults and runtime with randomized profiles as described
later in comparison to their performance without induced memory changes.

Each point on the graphs in Figures 3 and 6 represents the ratio of the average number of faults (or
runtime) during the changing memory profile to the average number of faults (or runtime) without the
modified adversarial profile.

We find that cache-adaptive (or nearly cache-adaptive) algorithms incur fewer faults with random memory
fluctuations than algorithms that are farther from optimally progressing, lending empirical support to the
cache-adaptive model.
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Figure 3: An empirical comparison of faults and runtime of MM-Scan and MM-Inplace under memory fluctuations.
Each plot shows the normalized faults or runtime under a randomized version of the worst-case profile.
The first two plots show the faults and runtime during a random profile where the memory drops with probability
p = 1/N at the beginning of each recursive call.
Similarly, in the last two plots, we drop the memory with probability p = 5× 10−8 at the beginning of each recursive
call. Recall that the theoretical worst-case profile drops the memory at the beginning of each recursive call.

Naive Matrix Multiplication
We implemented MM-Inplace and MM-Scan and tested their behavior on a variety of memory profiles.
The worst-case profile as described by Bender et al. [10] took too long to complete on any reasonably large
input size for MM-Scan.

We measured the faults and runtime of both algorithms under a fixed cache size and under a modified
version of the adversarial memory profile for naive matrix multiplication. Figure 3 shows the runtime and
faults of both algorithms under a changing cache normalized against the runtime and faults of both algorithms
under a fixed cache, respectively. We also provide details of the profile

Figure 3 shows that the relative number of faults that MM-Scan incurs during the random profile is higher
than the corresponding relative number of faults due to MM-Inplace on a random profile drawn from the
same distribution. As Bender et al. [9] shows, MM-Scan is a Θ(lgN) factor from optimally progressing on
a worst-case profile while MM-Inplace is optimally progressing on all profiles.

The relative faults incurred by MM-Scan grows at a non-constant rate. In contrast, the performance of
MM-Inplace decays gracefully in spite of memory fluctuations. The large measured difference between
MM-Scan and MM-Inplace may be due to the overhead of repopulating the cache after a flush incurred by
MM-Scan.

System
We ran experiments on a node with and tested their behavior on a node with a two core Intel® Xeon™ CPU
E5-2666 v3 at 2.90GHz. Each core has 32KB of L1 cache and 256 KB of L2 cache. Each socket has 25
Megabytes (MB) of shared L3 cache.
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6 Conclusion

We present the first constructive method for converting non-adaptive recursive divide-and-conquer algorithms
with scans into adaptive recursive algorithms through a new scan-hiding technique. For example, Strassen’s
algorithm for matrix multiplication is not immediately adaptive because of the scan at the beginning and end
of each recursive call. Our construction applies to Strassen, Coppersmith-Winograd, Vassilevska Williams
and Legall’s (o(n3)) matrix multiplication algorithms [32][13][34][20]. Scan hiding applies to all matrix
multiplication algorithms which achieve their bound by bounding the matrix multiplication tensor, which
include all currently known subcubic matrix multiplication algorithms.

Furthermore, our experiments suggest that the cache-adaptive model captures real-world performance
trends. The adaptive naive matrix multiply performed significantly better even under variants of the theoretical
worst-case profile. Our results suggest that performance differences due to cache adaptivity are not restricted
to a theoretical, pathological case.

Our results and prior work raise both theoretical and experimental questions. For example, our technique
of scan-hiding applies to many recursive algorithms but may not work for others with a superlinear step in the
beginning. One example is cache oblivious 3SUM which begins by constructing a size n lg n data-structure
in sort(n) lg n time and in each recursive step scans through n′M/ lgM elements where n′ is the size of the
problem in the recursion[5]. Additionally, algorithms that start with long scans do not immediately admit
cache-adaptive algorithms. Notably, Karstadt and Schwartz [23] gave an algorithm for matrix multiplication
that saves a constant factor of 5/6 but starts with a scan of length O(n2 lg(n)). Is there a variant of scan hiding
for even longer scans? Are there techniques to port other algorithms and data structures to the cache-adaptive
model?

Prior work gave constructions of worst-case profiles and showed that non-adaptive algorithms are not
optimal on such profiles. Measuring natural memory fluctuations on real systems may give us insight into the
real-world performance impact of cache-adaptivity.

Finally, we generate an adaptive algorithm from a non-adaptive algorithm in the case of Strassen. We also
produce a general theorem for transforming many (a, b, 1)-regular algorithms (those with recurrences of the
form T (n) = aT (n)/b+n) into cache-adaptive variants. This is the first instance of a general transformation
on algorithms to generate adaptive algorithms. Our findings suggest that other classes of algorithms that
are not initially adaptive may become adaptive through techniques such as scan-hiding. A future research
direction includes building a full framework for cache-adaptive algorithmic transformations.

We conclude by explaining why we are optimistic about cache adaptivity. Classical external memory
and cache-oblivious algorithms are well-studied and motivated by modern computer architectures with
hierarchical memory. Practitioners have empirically studied performance in the face of memory fluctuations
for years and have developed heuristics and experimentally fast algorithms for major operations such as
database sorts and joins. However, the need for theoretical guarantees of cache adaptivity will only grow with
the rise of multicore architectures and shared-memory programs.
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A AdaptiveStrassen Specification and Proofs of Optimality

In this section we review the details of Strassen’s algorithm and show that a straightforward implementation
with linear scans is not optimally progressing. Additionally, we apply scan hiding to Strassen as a concrete
example of our technique and show that the resulting algorithm, called AdaptiveStrassen, is adaptive.

Strassen’s Algorithm in the RAM Model
We provide the equations and pseudocode for Strassen’s matrix multiplication algorithm in Algorithm 1.
Recall that the recurrence for the runtime for Strassen’s algorithm for multiplying two n × n matrices is
T (n) = 7T (n/2) +O(n2) (in the RAM model).

STRASSEN(X, Y, Z):
Let X,Y be input matrices and Z be the output
matrix. We define the matrix quadrants as follows for
X (quadrants for Y and Z are defined in the same
way):

X =

[
X1,1 X1,2

X2,1 X2,2

]
.

Strassen’s algorithm recursively computes 7
intermediate matrix products with 10 linear scans:

S1 = (X1,1 +X2,2) · (Y1,1 + Y2,2)

S2 = (X2,1 +X2,2) · Y1,1
S3 = X1,1 · (Y1,2 − Y2,2)

S4 = X2,2 · (Y2,1 − Y1,1)

S5 = (X1,1 +X1,2) · Y2,2
S6 = (X2,1 −X1,1) · (Y1,1 + Y1,2)

S7 = (X1,2 −X2,2) · (Y2,1 + Y2,2) .

The quadrants of the resulting Z matrix can be
computed in terms of S1, . . . , S7 as follows:

Z1,1 = S1 + S4 − S5 + S7

Z1,2 = S3 + S5

Z2,1 = S2 + S4

Z2,2 = S1 − S2 + S3 + S6 .

Algorithm 1: Strassen’s algorithm for matrix multiplication.

Naive Strassen is Not Optimally Progressing
We refer to the straightforward implementation of Algorithm 1 as Naive Strassen.

Definition 21 Naive Strassen computes the 10 matrix sums needed to produce the input for its 7 recursive
calls, makes its 7 recursive calls each of which return an associated output matrix, then does the necessary 8
matrix sums to produce its output. This algorithm results in a recurrence of the form T (n) = 7T (n/2) +
O(n2), or in terms of its input size N = n2 we have the recurrence T (N) = 7T (N/4) +O(N).

Lemma 8 Naive Strassen is not optimally progressing with respect to the progress bound PP(M) =
M lg(7)/2, even if ∀t,M(t) > B lg(n).

PROOF. By Theorem 7.3 from [9], if an algorithm with linear space complexity has a recurrence of the
form T (N) = aT (N/b) +O(N c) with a tall cache assumption that M(t) > lg(n)B then the algorithm is a
lg(N/(B lg(n))) factor4 away from being optimally progressing [9].

4This is only a constant if the full input size fits in O(B lg(n)) words, which is a very small input size.
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AdaptiveStrassen Example
We illustrate a small example of computing the upper right 2× 2 result submatrix of a 4× 4 Strassen call
in Figure 4.

Figure 4: Computing the upper right (2 × 2) output matrix of a 4 × 4 Strassen call. Before we can compute result
submatrix, we have to compute P1 and P2. Before computing P1 and P2, however, we have to compute T12 and T21

which are sums of input submatrices. We will discuss how and when these are pre-computed given that P1 and P2 are
the first two recursive calls made.

We show a part of the recursion tree of AdaptiveStrassen, our modified version of Strassen via
scan hiding in Figure 5. At a high level, the multiplications in the leaves are spread evenly around additions,
or broken-up scans. This even mix is what “homogenizes” the program, allowing for all squares in a memory
profile to make within a constant factor of optimal progress.

AdaptiveStrassen first sets up the pre- and post-scans as input and output to the entire algo-
rithm. It then completes the remaining work of the algorithm in recusive calls. We provide pseudocode
for AdaptiveStrassen in Algorithm 2, which calls AdaptiveStrassenRecurse (Algorithm 3)
for its recursive subcalls. Each leaf of AdaptiveStrassenRecurse takes the scans it must compute as
well as the elements it must multiply. Additionally, we define a subroutine ReturnSplitScans(scans,B)
that takes an array of pointers to scans as input and splits the scans into even portions, but of size no shorter
than B. When the total size of scans is < 7B some children will be handed empty lists.

We formalize how each node in the recursion tree distributes scans to its siblings in Algorithm 6.
We showed that AdaptiveStrassen is optimally progressing in Section 3 but use the following

specific proofs for conreteness and details of how scan hiding results in optimally progressing algorithms.
We first describe an assignment of work such that the total work done over the execution is O(nlog2(7))

and that on any m(t)×m(t) block of execution, Ω((mB)lg(7)/2) work is done. An optimal algorithm OPT
for Strassen has Θ(nlg(7)) accesses and has a progress function of ρ(m(t)) = (m(t)B)lg(7)/2.

We show adaptivity via a potential argument. At a high level, we assign “extra” work to each square of
the square profile in which AdaptiveStrassen is not performing within a constant factor of OPT. The
initial scans in AdaptiveStrassen may not be optimally progressing, but we describe an assignment of
work and potential such that the overall algorithm is optimally progressing.

For example, suppose at time t1 of an algorithm A can perform w1 work on a square of size m1 and
at time t2, A can perform w2 work on a square of size m1 where w1 < w2, then we can assign w2 − w1

potential to A at t1.
If an A performs within a constant factor of OPT in terms of amount of work and potential, then it is

cache-adaptive. Throughout most of the algorithm, we assign one unit of progress to each memory access an

18



× =
X11 X12

X21 X22

Y11 Y12

Y21 Y22

P1 + P2

T11 = X11

T12 = Y12 − Y22

T21 = X11 +X12

T22 = Y22

P1 = T11T12

P2 = T21T22

× = P1T11 T12 T21 T22 P2× =

Seven Mulitplications for P1 (dashed squares). Interspersed are additions (solid lines).

In the intial scan T11 and T12 will be pre-computed.

The matricies T21 and T22 must be computed before the mulitplication of P1 finishes.

X12

X × Y = Z

T11 × T12 = P1 T21 × T22 = P2

Larger Depiction Larger Depiction

T21 T21T22 T22 P2X11 X12 Y22

Figure 5: The pre-computation scan of size O(n2) would in this case pre-compute T11 and T21. Then, all multiplications
can be done. Assume that the smallest size of subproblem (3 small boxes) fit in memory. Then we show how the (dotted
line boxes not filled in) multiplications needed for P1 can be inter-spersed with the (complete line and colored in)
additions or scans needed to pre-compute T21 and T22. Note that T21 and T22 will be done computing before we try to
compute the multiplication of P2. Thus, we can repeat the process of multiplies interspersed with pre-computation
during the multiplication for P2. The additions or scans during P2 will be for the inputs to the next multiplication, P3

(not listed here). The multiplications in P2 are computed based on the pre-computed matrices T21 and T22 (dotted line
boxes filled in).
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ADAPTIVESTRASSEN(PX,PY,PZ,N):
▷We define the global variables
Set start_n = n;
Set numLeaves = 0;
▷We use the length of a cache line, as mentioned.
Set B = length of a cache line;
▷We initialize the sum arrays for input and outputs.
▷We need a place to store are pre-computed and post-computed scans.
for s ∈ {x1 = 0, x2 = 1, y1 = 2, y2 = 3, z1 = 4, z2 = 5} do

Set P [s] = pointer array of length lg(n) + 1;
for i ∈ [0, lg(n)] do

P [s][i] = pointer array of length i+ 1;
for j ∈ [0, i− 1] do

P [s][i][j] =matrix of size 2j by 2j ;
Set IsActive = is a pointer array of length lg(n);
Set IsPrecompute = is a pointer array of length lg(n);
for i ∈ [0, lg(n)] do

IsActive[i] = [P [x1][i], P [y1][i], P [z1][i]];
IsPrecompute[i] = [P [x2][i], P [y2][i], P [z2][i]];

▷Now initialize P [x1][lg(n)] and P [y1][lg(n)] to be the input matrices for the spines
DOPRECURSESPINE(IsActive)
▷We will let the input and scans be represented by pointers for two places to read and one to write.
▷Next, we will give the length of the input.
▷Finally, we will also for convenience use a last entry to mark ×,+,−, copy

Let input = [P [x1][lg(n)], P [y1][lg(n)], P [z1][lg(n)], n,×];
Let scans = [];
▷Make the recursive call to Strassen where we hide scans
ADAPTIVESTRASSENRECURSE(n, lg(n), input, scans)
▷Output from multiplications need to be summed together
DOPOSTPROCESSSPINE(IsActive, IsPrecompute)

Algorithm 2: AdaptiveStrassen(pX,pY,pZ,n)

algorithm makes. We reassign progress in our potential argument and show that AdaptiveStrassen
makes steady progress throughout its execution. Specifically, we assigned progress to the initial and end
scans because they are “harder” and are not optimally progressing. We will refer to our reassigned progress
as work.

Lemma 9 Let the input matrices to an instance of Strassen have size n× n. If the following are true:

• The optimal Strassen algorithm takes time nlg(7) in the RAM model.

• The optimal Strassen algorithm respects the progress function ρP(□m(t)) = c0 (m(t))lg(7)/2 where c0
is a constant such that c0 > 0. Let M(t) be a profile that starts at time step 0 and ends at time step T
when the optimal Strassen algorithm completes.

• A is an algorithm which computes matrix multiplication and has total work c1n
lg(7), total potential

c2n
lg(7), and completes c3(m(t)B)lg(7)/2 work+potential in any m(t)×m(t) square of a profile where

c1, c2 and c3 are all constants such that c1, c2, c3 > 0 and where mB < n2.

• If the total progress plus potential completed is (c1 + c2)n
lg(7) during A’s execution, A is guaranteed

to have finished its last access.
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ADAPTIVESTRASSENRECURSE(N,LEVEL, INPUT, SCANS):
if n > 1 then

ADAPTIVESTRASSENRECURSESPLIT(n,level, input, scans);
else if n ≤ 1 then

▷Do the multiplication you were asked to do
Set input[0] ∗ input[1] = input[2];
▷Do the additions you were asked to do by your parent
for scan in scans do

▷Read all the information about your scan out
Set in1 = scan[0];
Set in2 = scan[1];
Set out = scan[2];
Set length = scan[3];
Set op = scan[4];
for i ∈ [0, length− 1] do

▷Do the requested operation to the input and write to output
out[i] = op(in1[i], in2[i]);

Algorithm 3: AdaptiveStrassenRecurse(n,level, input, scans)

PRESCAN(INX, INY, OUTX, OUTY, N):
▷Now we want to split the input scan into seven parts.
childScan[0].append([inX[0], inX[3n/4], outX,+]);
childScan[0].append([inY [0], inY [3n/4], outY,+]);
childScan[1].append([inX[2n/4], inX[3n/4], outX,+]);
childScan[1].append([inY [0], inY [0], outY, copy]);
childScan[2].append([inX[3n/4], inX[3n/4], outX, copy]);
childScan[2].append([inY [2n/4], inY [0], outY,−]);
childScan[3].append([inX[0], inX[1n/4], outX,+]);
childScan[3].append([inY [3n/4], inY [3n/4], outY, copy]);
childScan[4].append([inX[3n/4], inX[0], outX,−]);
childScan[4].append([inY [0], inY [2n/4], outY,+]);
childScan[5].append([inX[1n/4], inX[3n/4], outX,−]);
childScan[5].append([inY [2n/4], inY [3n/4], outY,+]);

Algorithm 4: preScan(inX, inY, outX, outY, n)

Then A is cache adaptive.

PROOF. Let work be progress plus potential.
Let M be a profile and M ′ be the inner square profile of M such that for all t, m(t)B < n2. If

m(t)B ≥ n2, the entire problem can fit into cache and A will complete given a constant factor expansion.
The optimal Strassen algorithm makes at most a constant factor c4 > 0 less progress on the inner profile

M ′ than it did on the original profile M .
A makes at least as much progress on each square of M with time augmentation 1/(c3 · c4) as OPT

does in the non-augmented corresponding square. Therefore, A completes at least nlg(7) work and potential
over the entire profile. A completes at least (c1 + c2)n

lg(7) work and potential with time augmentation
(c1 · c2)/(c3 · c4).
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POSTSCAN(INZ, OUTZ):
childScan[1].append([outZ, inZ[0], inZ[0],+]);
childScan[1].append([outZ, inZ[3], inZ[3],+]);
childScan[2].append([outZ, inZ[3], inZ[3], 1]);
childScan[3].append([outZ, inZ[1], inZ[1],+]);
childScan[3].append([outZ, inZ[3], inZ[3],+]);
childScan[4].append([outZ, inZ[0], inZ[0],+]);
childScan[4].append([outZ, inZ[2], inZ[2],+]);
childScan[5].append([outZ, inZ[0], inZ[0],−]);
childScan[5].append([outZ, inZ[1], inZ[1],+]);
childScan[6].append([outZ, inZ[3], inZ[3],+]);
childScan[7].append([outZ, inZ[0], inZ[0],+]);

Algorithm 5: postScan(inZ, outZ)

Thus A must have completed.
We show the recursive part of Cache Adaptive Strassen is optimally progressing when m(t) > lg(n).

This is not a surprise given that, if N is the initial input size, it has a recurrence of the form T (n) =
7T (n/2) +O(min{lg(N), n2}).

Lemma 10 AdaptiveStrassenRecurse is optimally progressing if

1. ∀t, m(t) > lg(n) and

2. AdaptiveStrassenRecurse is aware of the size of the cache line size B with respect to the
progress bound ρ(m(t)) = (m(t)B)lg(7)/2.

PROOF. We will show that in any square of size m(t) × m(t), AdaptiveStrassenRecurse does
Ω((mB)lg(7)/2) work, as long as mB < n2.

We will assign work to the multiplications at the leaves of the recursion. That is, we count each
multiplication operation as making progress in terms of work. The total number of such multiplications is
O(nlg(7)).

We will show that AdaptiveStrassenRecurse incurs only a constant factor more misses than
classic Strassen. Suppose that we reached a level of the recursion where the side length of the matrices
x <

√
mB/10, i.e. the problem at this level of the recursion fits in memory.

The length of the list of scans is min (lg(n), x/B) words. Therefore, reading in the list incurs at most
min

(
lg(n)/B, x/B2

)
cache misses.

The total size of P [s][i], the additional scans that each leaf needs to do, for all s ∈ {x1 = 0, x2 = 1, y1 =
2, y2 = 3, z1 = 4, z2 = 5} for i < lg(x) is < 5x2, so all of these smaller scans require no extra cache misses.
Additionally, the multiplications only require reading in the size of the problem once the problem fits in
cache.

We will now show tht the cache misses due to extra scans passed down to each elaf from interleaved
scans is at most the size of the cache. The total number of cache misses from scans is bounded by the size of
the scans assigned to each child node. Additionally, AdaptiveStrassenRecurse may incur one cache
miss from each of the levels of P . That is, the number of faults due to interleaving scans is at most

lg(n) + (1/B)

lg(n)−lg(x)∑
i=0

x24i/(7i) < 4/3x2/B + lg(n).

22



ADAPTIVESTRASSENRECURSESPLIT(N,LEVEL, INPUT, SCANS):
▷Now we want to split the scan into seven parts
▷Specifically come up with 7 lists each haveing about 1/7 of the total scan work
Let childScan = RETURNSPLITSCANS(scans,B);
▷Also each child needs to do the scans for its sibling
▷These scans represent additions needed to produce matrices
▷for the input to Strassen.
Let outX = IsPrecompute[level − 1][0];
Let outY = IsPrecompute[level − 1][1];
Let outZ = IsPrecompute[level − 1][2];
Let inX = input[0];
Let inY = input[1];
Let inZ = input[2];
▷Each input has to copy or add matrices
PRESCAN(inX, inY, outX, outY, n);
▷We also need the child nodes to write the outputs of the previous multiplications to the output for the
▷parent multiplication following Strassen’s equation.
POSTSCAN(childScan, inZ, outZ);
▷Here we have 7 calls to do the recursive tasks
for i ∈ [0, 6] do

▷Make the call to each child
Set ℓ = level − 1;
Set si = childScan[i];
Set inChild = [outX, outY, outZ,×];
ADAPTIVESTRASSENRECURSE(n/2, ℓ, inChild, si);

▷Switch the active and preComputation pointers so my sibling can use the information
active = IsActive[level];
IsActive[level] = IsPrecompute[level];
IsPrecompute[level] = IsActive[level];

Algorithm 6: AdaptiveStrassenRecurseSplit(n,level, input, scans)

Therefore, the number of cache misses incurred by a problem of size x is at most (4/3+ 5)x2/B+ lg(n)
when x <

√
mB/10. A full call to AdaptiveStrassenRecurse (x, level) does xlg(7) work.

Suppose we reached an m(t)×m(t) square in which at least half of the square requires cache misses
for AdaptiveStrassenRecurse. We can compute at least 1 call to AdaptiveStrassenRecurse
(x, level, input, scans) where (mB − lg(n))/(6 × 2 × 2) < x < (mB − lg(n))/(6 × 2) in that square.
Thus, if mB > 4 lg(n)B then AdaptiveStrassenRecurse completes at least (mB)lg(7)/2/24 =
Ω((mB)lg(7)/2) work.

Note that every m(t)×m(t) square in the profile must either be at least half scans or at least half calls to
AdaptiveStrassenRecurse. Therefore, AdaptiveStrassenRecurse is optimally progressing
in every square.

Next, we show that the linear scans at the beginning and end of AdaptiveStrassen do not preclude
adaptivity via a potential argument.

Lemma 11 Let M be a square profile. For all t, AdaptiveStrassen completes at least Ω((m(t)B)lg(7)/2−1m(t)B)
work plus potential on each m(t)×m(t) square.

Furthermore, if AdaptiveStrassen completed all the work plus potential as per an intial assignment
of work and potential, then it must have completed its last access.
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PROOF. First we will consider the time that initial scans and end scans take, or the work in AdaptiveStrassen
excluding the work of AdaptiveStrassenRecurse.

Since the pre and post-scans require allocatin sextra space, we first compute how long these allocations
take. The size of the array P of scans is

lg(n)∑
i=0

lg(n)−i∑
j=0

n2

4i4j
<

lg(n)∑
i=0

4n2

3 · 4i
<

16n2

9
.

Therefore, the allocation must do a scan of length 16/9n2. We start with a pre-scan of length
∑lg(n)

i=0 n2/(4i) <
4/3n2 and end with a post-scan of the same length.

We will assign progress to these scans such that the total potential is O(nlg(7)). We assign nlg(7)−2

potential to each operation of the pre and post-scans. The total potential assigned to the scans is n2nlg(7)−2 =
O(nlg(7)). Thus, in an m(t)×m(t) square we complete Ω(nlg(7)−2m(t)B) progress. Note that nlg(7)−2mB =
Ω((mB)lg(7)/2−1mB) as long as mB < n2. If mB > n2, AdaptiveStrassen could just have com-
pleted all of its work in one square with augmentation.

Finally we want to show that we don’t introduce any computational overhead.

Lemma 12 AdaptiveStrassen takes O(nlg(7)) time in the word-RAM model.

PROOF. The running time for the pre and post-scans is O(n2).
Let N be the initial input size. The recurrence for the runtime of AdaptiveStrassenRecurse is

T (n) = 7T (n/2) + min(lg(N), n2). Therefore, T (n) = 7T (n/2) +O(n2) = O(nlg(7)).

B Sorting Experiments

We compared the cache performance of different sorting algorithms from the standard template library
following STL for XXL datasets (STXXL) [15] with three different sorting algorithms in Figure 6. In order to
measure performance with memory changes, we first chose an initial memory size M and ran each algorithm
while changing the memory size in the range [100MB, 2M] every second. We used Linux cgroups to control
the memory available to each algorithm.

The three sorting algorithms from STXXL are as follows.

1. std::sort from the C++ standard library (libstdc++), which implements introspective sort
(introsort), a hybrid sorting algorithm which uses quick sort until a maximum recursion depth, at which
point it switches to heap sort [27? ].

2. stxxl::sort from STXXL. The library implements an asynchronous variant on standard k-way
merge sort as described in [16].

3. Cache-oblivious funnel sort implemented in [28].

The sorting algorithms have different structures, so we measured the performance of each algorithm
on profiles independent of algorithm structure. The performance of the “more adaptive” sorting algorithms
is therefore not a result of friendlier profiles but because the profiles are independent of the algorithm
structure. In practice, profiles are often not tied to algorithm structure (e.g. fluctuations based on other parallel
computations), so is meaningful to compare the algorithms over randomized profiles.

Sorting algorithms that have better cache-adaptive guarantees incurred relatively fewer faults during
a random profile. Specifically, std::sort incurred relatively more faults than both funnel sort and
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stxxl::sort, Funnel sort and stxxl::sort are closer to adaptivity than std::sort, so they incur
fewer faults when the size of memory changes. A possible contributing factor to the difference between the
observed adaptivity of the experiments is that funnel sort at stxxl::sort are engineered for external-
memory computations, while std::sort is not.
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Figure 6: Each point on the plot represents the ratio of the faults incurred during a random profile to the faults incurred
on the same input with a fixed, unchanging profile. In the third and fourth plots, we show the faults incurred during
different sorting algorithms on changing memory profiles. Each of these two plots represents a different starting memory
M in Megabytes. The random profile changes the memory to anywhere in the range [100, M] Megabytes each second.
We normalize the faults incurred during the random profile on a certain input against the faults incurred when the
available memory is fixed at M at the beginning of execution.
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