
Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Bridging Cache-Friendliness and Concurrency:
A Locality-Optimized In-Memory B-Skiplist

Abstract
Skiplists are widely used for in-memory indexing inmany key-value
stores, such as RocksDB and LevelDB, due to their ease of imple-
mentation and simple concurrency control mechanisms. However,
traditional skiplists suffer from poor cache locality, as they store
only a single element per node, leaving performance on the table.
Minimizing last-level cache misses is key to maximizing in-memory
index performance, making high cache locality essential.

In this paper, we present a practical concurrent B-skiplist that
enhances cache locality and performance while preserving the
simplicity of traditional skiplist structures and concurrency control
schemes. Our key contributions include a top-down, single-pass
insertion algorithm for B-skiplists and a corresponding simple and
efficient top-down concurrency control scheme.

On 128 threads, the proposed concurrent B-skiplist achieves
between 2×–9× higher throughput compared to state-of-the-art
concurrent skiplist implementations, including Facebook’s con-
current skiplist from Folly and the Java ConcurrentSkipListMap.
Furthermore, we find that the B-skiplist achieves competitive (0.9×–
1.7×) throughput on point workloads compared to state-of-the-art
cache-optimized tree-based indices (e.g., Masstree). For a more com-
plete picture of the performance, we also measure the latency of
skiplist- and tree-based indices and find that the B-skiplist achieves
between 3.5×–103× lower 99% latency compared to other concur-
rent skiplists and between 0.85×–64× lower 99% latency compared
to tree-based indices on point workloads with inserts.

Keywords
B-skiplist, blocked skiplist, concurrency

ACM Reference Format:
. 2018. Bridging Cache-Friendliness and Concurrency: A Locality-Optimized
In-Memory B-Skiplist. In Proceedings of Make sure to enter the correct con-
ference title from your rights confirmation email (Conference acronym ’XX).
ACM, New York, NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
The skiplist [28] has become a widely used in-memory index (i.e.,
the memtable) in many popular databases, including HBase [14],
RocksDB [29], and LevelDB [21]. Additionally, Java features a
skiplist as its primary concurrent set and map implementation [18].

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

YCSB Workload Skiplist B-tree B-skiplist SL/BSL BT/BSL
(This paper)

Load + C 4.9E9 2.1E9 1.5E9 3.2 1.4
Load + E 1.1E10 2.3E9 2.0E9 5.6 1.2

Table 1: LLC load misses1 of Facebook’s folly skiplist [1], a
concurrent B-tree [32] and the concurrent B-skiplist (this
paper) during the YCSB [7] load and run phase. The load
phase has 100% inserts, workload C has 100% finds, and E has
95% range queries/5% inserts.

The main reason for the choice of skiplists [28] over trees (e.g.,
the B-tree [4]) is because skiplists enable simple structural modi-
fication operations. In contrast to tree-based indices, skiplists do
not require complex rebalancing operations because elements are
randomly (using coin tosses) assigned a height upfront. As a re-
sult, skiplists support simple and effective (both lock-based and
lock-free) concurrency control (CC) schemes [10, 11, 15, 16, 27].
Locality issues in skiplists. Unfortunately, traditional skiplists
exhibit poor spatial locality because they store a single element per
node. In contrast, cache-friendly indexes such as B-trees [4] store
multiple elements per node, reducing the height of the structure
and therefore the number of memory fetches during top-to-bottom
traversals. Furthermore, storing multiple elements per node further
reduces cache misses during horizontal traversals.

Table 1 shows that skiplists incur significantlymore cachemisses
than B-trees, leaving performance on the table. Concretely, on the
tested workloads, a state-of-the-art skiplist [1] incurs 2.4 − 4.8×
more cache misses than a comparable B-tree [32] on both point
and range workloads. This discrepancy in cache misses translates
into actual performance: the B-tree achieves between 2×-8× higher
throughput than the skiplist on these workloads.

In this paper, we introduce a concurrent B-skiplist that improves
the cache locality (and therefore the performance) of the traditional
skiplist without giving up on the skiplist’s simple and effective CC
schemes. Furthermore, due to its simplified CC scheme, the B-skiplist
achieves lower worst-case latency than B-trees.

Skiplist structure. At a high level, skiplists [28] are randomized
self-balancing data structures that support fast search, insertion,
and deletion in 𝑂 (log𝑛) time with high probability2 (w.h.p.) by lay-
eringmultiple linked lists. The bottommost level is a standard sorted
linked list, while higher levels serve as “express lanes,” allowing
searches to skip over multiple elements at a time.

The skiplist is parameterized by a promotion probability 𝑝 ,
which determines the likelihood of elements appearing in higher
levels of linked lists. Upon insertion, an element is randomly (using
coin tosses with probability of heads 𝑝) assigned a height equal to
the number of successive coin tosses until heads for that particular

1Section 5 contains all details about the experimental setup.
2An event 𝐸𝑛 on a problem of size 𝑛 occurs with high probabilty if 𝑃𝑟 [𝐸𝑛 ] ≥
1 − 1/𝑛𝑐 for some constant 𝑐 .

2025-06-18 11:39. Page 1 of 1–10.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

element. The height of an element is the number of linked-list levels
that element appears in, starting from the lowest level.
Theoretical steps towards a cache-optimized skiplist. We will
use the I/O model (or external-memory model) [3], which measures
how well an algorithm or data structure takes advantage of spatial
locality by measuring cache-line transfers. The model is parameter-
ized by a cache-line size 𝑍 . Transferring 𝑍 contiguous elements in
one cache line has unit cost in the model.

Theoretically, given some node size 𝐵 = Θ(𝑍 ), the straight-
forward way to improve the cache-friendliness of skiplists is to
promote elements with probability 1/𝐵 rather than 1/2 as in tra-
ditional skiplists. Indeed, Golovin [12] proposed this method with
the B-skiplist, a cache-optimized skiplist that matches the B-tree’s
bounds in expectation. For each level in this theoretical B-skiplist,
consecutive unpromoted elements are stored in the same node.
However, this initial paper on B-skiplists stops short of providing
theoretical guarantees w.h.p., parallelization, and implementation,
leaving a massive gap in making B-skiplists practical.
Challenges to blocking skiplists. In practice, addressing locality
issues in skiplists via blocking (i.e., storing multiple elements per
node) raises challenges due to the randomized variable size of nodes.
Theoretically, each node in a B-skiplist has Θ(𝐵) elements in expec-
tation, but there exist nodes with as many as Θ(𝐵 log𝑛) elements
w.h.p. [5, 6]. Since nodes can be large, finds and inserts, which re-
quire scanning and potentially shifting a linear number of elements
in a node, can cost as much as 𝑂 (log𝑛) cache-line transfers in the
I/O model, matching a regular skiplist’s randomized bounds.
Bounding the element moves in a B-skiplist. To mitigate this
issue in practice, we enforce fixed-size physical nodes in the B-
skiplist to bound the maximum number of element moves during
insertions. B-skiplist nodes are allowed to grow to arbitrary sizes
according to the results of randomized promotions. However, if
a logical B-skiplist node contains 𝑘 > 𝐵 elements, we physically
store it as ⌈𝑘/𝐵⌉ nodes at the same level connected by pointers.

The design choice of fixed-size nodes is subtle but is key to
fast inserts in practice because it limits the worst-case number of
cache-line writes to Θ(1) per level. In contrast, if physical nodes
are allowed to grow arbitrarily, the number of cache-line writes in
any node is 𝑂 (log𝑛) w.h.p. To be clear, this choice does not affect
the overall insertion bound in the I/O model as each insert still
requires 𝑂 (log𝑛) cache-line reads w.h.p. to determine the correct
position. However, as we shall see in the empirical evaluation, fixed-
size nodes enable the B-skiplist to support fast insertions and low
variance in the latency of operations.
Prior steps towards concurrent blocked skiplists. Furthermore,
any candidate for the in-memory index in databases, including the
proposed B-skiplist, must be concurrent to take full advantage of
parallel resources in today’s multicore machines.

On the practical side, there have been several steps towards
improving locality in concurrent skiplists [24, 31], but these often
involve periodic rebuilding of the upper levels, increasing the worst-
case latency of individual operations. For example, CSSL [30] and
PI [31] periodically rebuild the upper levels of the index, blocking
reads and writes during the restructuring process.

Other blocked skiplists vary the component data structures and
CC schemes at different levels, giving up on the simplicity of the

original concurrent skiplists. For example, ESL [24] first inserts
elements only into the bottom level and later updates the upper
index levels asynchronously with background threads. The ESL
is composed of two levels with distinct index structures and CC
mechanisms. Similarly, S3 [34], another cache-sensitive skiplist,
employs a similar strategy of a two-level index with different CC
schemes. Furthermore, it adaptively chooses “guard entries” with
a neural model, giving up on the randomization of skiplists and
therefore the skiplist’s probabilistic theoretical guarantees.
Designing a concurrent B-skiplist. In this work, we focus on
designing a simple and effective CC mechanism for B-skiplists with-
out modifying its high-level structure. Specifically, we propose a
CC mechanism based on fine-grained locking to achieve both high
throughput and low worst-case latency. The ideal CC scheme for
B-skiplists inherits the simplicity and performance of skiplist-based
CC schemes [10, 15, 16, 27], so we use them as a starting point.
However, they do not handle node splits and merges.

At a high level, skiplist insertion algorithms (and their corre-
sponding CC mechanisms) make two traversals through the index
if an element is promoted: one “top-down” read-only phase to deter-
mine the location(s) that an element should be inserted, and then a
corresponding “bottom-up” write-only phase that links in the new
skiplist nodes [10, 15, 16, 26, 27]. In both the top-down and bottom-
up phase, a CC scheme for skiplists may either 1) hold a constant
number of locks via hand-over-hand locking [27] or 2) hold locks
on all levels that an element is promoted to [10, 15, 16, 26].

To reduce the number of traversals in both sequential and concur-
rent insertions, we introduce a top-down insertion3 algorithm and
that exploits inherent skiplist properties to traverse the B-skiplist
only once (top-to-bottom and left-to-right). In contrast, existing
skiplist insertion algorithms make two traversals if an element is
promoted. As we shall see, the design of the insertion algorithm
has major implications for the corresponding CC mechanism.

We build upon this top-down insertion algorithm to develop a
simple yet efficient top-down CC scheme based on reader-writer
locks [8], a common synchronization primitive for in-memory in-
dexes. The top-down CC scheme minimizes overheads by 1) avoid-
ing multiple retires from root-to-leaf, and 2) minimizing both the
number of exclusive locks held at one time and the duration that
the locks are held. Using the top-down CC scheme, a thread only
needs to lock nodes on at most two layers at once, and locks only a
constant number of nodes at once.
Contributions. The contributions of the paper are as follows:
• The design of the B-skiplist with fixed-size nodes to improve
cache locality and mitigate worst-case behavior.

• A novel top-down concurrency control mechanism for B-skiplists
built on a corresponding insertion algorithm for B-skiplists that
completes insertions in one pass from top-to-bottom.

• A C++ implementation of the concurrent B-skiplist.
• An empirical evaluation of the concurrent B-skiplist compared to
several in-memory skiplist-based and B-tree-based indexes that
demonstrates that the B-skiplist achieves between 2×–9× higher
throughput on YCSB workloads [7] compared to state-of-the-art
concurrent skiplists.

3We focus on the case of insertions due to space constraints, but deletions are
symmetric.

2025-06-18 11:39. Page 2 of 1–10.



Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Bridging Cache-Friendliness and Concurrency:
A Locality-Optimized In-Memory B-Skiplist Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Load A B C E
0

0.5

1

1.5

1

Workload

N
or
m
al
iz
ed

th
ro
ug

hp
ut B-skiplist Folly SL Java SL NHSSL

Figure 1: Normalized throughput (ops/s) of skiplist-based
indices relative to the B-skiplist with uniform random keys.

∞

−∞ 7 ∞

−∞ 4 7 22 ∞
−∞ 2 4 6 7 8 13 15 22 34 87 89

Levels
2

1

0

Figure 2: Example of a skiplist.

Results summary. Figure 1 demonstrates that the B-skiplist achieves
between 2×–9× higher throughput on workloads from the popular
YCSB [7] compared to state-of-the-art concurrent skiplists includ-
ing Facebook’s concurrent skiplist from the Folly library [1], the
Java ConcurrentSkipListMap [18], and the No Hot Spot Skiplist
(NHSSL) [9]. The YCSB workloads include a mix of point opera-
tions (finds/inserts) and range operations.

Furthermore, we also evaluate two tree-based indices: a state-of-
the-art concurrent B-tree [32] and Masstree [22], a popular cache-
optimized in-memory index. We find that the B-skiplist achieves
competitive throughput (between 0.9×–1.7×) on point workloads,
and between 0.7×–7.5× throughput on range workloads.

In addition to throughput, we evaluate all data structures on
latency as well for a more complete picture of data-structure per-
formance. As we shall detail in Section 5, the B-skiplist achieves
between 3.5×–103× lower 99% latency compared to existing con-
current skiplists.

2 Preliminaries
This section will give background on the structure and operations
of skiplists and B-skiplists necessary to understand later sections.
For the operations, it will focus on inserts for simplicity, but deletes
are symmetric. Furthermore, it will review reader-writer synchro-
nization primitive, which is the core functionality that the proposed
top-down single-pass concurrency control scheme for B-skiplists is
based on.

Operations. A key-value dictionary data type stores pairs of keys
and values (k, v). Their main operations are as follows:
• find(k): return the associated value v.
• insert(k, v): add (k, v) to the data structure.
• range(k, f, length): apply the function f to the length key-
value pairs with the smallest keys that are at least k.

We consider these operations since they comprise the popular
YCSB [7] workloads we use to perform the evaluation in Section 5.

2.1 Skiplist structure and operations

Structure.The skiplist [28] is a data structure that stores a hierarchy
of levels of linked lists. Each linked list is sorted by the keys of the
elements in that linked list, with sentinels at the beginning and end
for −∞ and ∞. The bottommost level (level 0) contains all of the
elements in the data structure. The list size decreases by a constant
factor in expectation at each successive level as we move up the
hierarchy. Each linked list at some level ℓ > 0 contains a subset of
the elements in the linked list below it (level ℓ − 1). This property
is called inclusion invariant, where every element present at level ℓ
must also be present at levels 0, . . . , ℓ − 1.

Figure 2 illustrates the skiplist’s pointer structure. Just like in
trees, we will refer to the nodes at the lowest level of the skiplist
(ℓ = 0) as leaf nodes and those at higher levels (ℓ > 0) as internal
nodes. All nodes have a next pointer to a successor node in the
same level, and all internal nodes also have a down pointer to the
node with the same key in the level below. The root node is the
leftmost node at the highest level.

An element that appears at some maximum level ℓ > 0 is said
to be promoted to that level. Promotions are determined upfront
at the start of an insertion via randomization with a series of coin
flips. Notably, the level that an element is promoted to in a skiplist
is unrelated to the current structure of elements in the skiplist.
That is, the highest level that an element appears at in a skiplist is
equal to the number of successive “heads” seen when flipping a coin
with some constant probabilty 𝑝 (usually 𝑝 = 1/2, but any proba-
bilty 1/𝑐 where 𝑐 is a constant sufficies to achieve the asymptotic
bounds). Given a skiplist with 𝑛 elements, the maximum height of
any element is 𝑂 (log𝑛) in expectation and with high probability.
Operations. All operations in a skiplist start at the upper left
sentinel (−∞) at the highest level and traverse through the pointer
structure in a left-to-right and top-to-bottom fashion. The skiplist is
a self-balancing data structure and does not require pointer rotation
to maintain its bounds. A skiplist with 𝑛 elements supports all point
operations (insert, delete, find) in 𝑂 (log𝑛) time in expectation and
with high probability.

For ease of understanding, given a node with key x at a given
level ℓ , let its pred (predecessor) element be the largest key strictly
less than x, and let its succ (successor) element be the smallest
key strictly greater than x at level ℓ . Except for the beginning and
end sentinels, all nodes in a skiplist have logical pred and succ
elements which correspond to nodes in the skiplist.

To find an element k, the traversal searches left-to-right starting
from the left sentinel on the highest level. Upon finding its succ
node at that level, the search follows the down pointer of the pred
node. The search continues in this way until the lowest level, where
it scans left to right until it either finds k or does not find it and
encounters some element greater than k.

The range operation is a direct extension of a find. Rather than
terminating at the search key k or its succ element in the leaf level,
the range search continues a left-to-right search through the leaf
layer until length elements have been read, or the search reaches
the right sentinel.

Inserts are similar to finds in terms of traversal order, but must
link in a new node containing some key k at each level that it is
promoted to. Letℎ ≥ 0 be the height that the newly inserted element

2025-06-18 11:39. Page 3 of 1–10.



Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

∞

−∞ 7 ∞

−∞ 4 7 22 ∞

−∞ 2 4 6 7 8 13 15 22 34 87 89

Levels

2

1

0

Figure 3: Example of a B-skiplist with node size 𝐵 = 4.

is promoted to. One way to perform this structural modification
is to keep track of the pred nodes of k at all levels during the
downward traversal. After the search reaches the bottom level, the
insert operation creates ℎ + 1 new nodes containing k and adjusts
the next pointers at each level so that k->next = pred->next and
then pred->next = k. Furthermore, the insert must update the
down pointers in each internal node with the key k to the node
containing k in the next lowest level.

2.2 B-skiplist structure and operations
Structure. The B-skiplist is a “blocked” version of a skiplist that
contains multiple elements per node [12]. The elements are totally
sorted at each level of the B-skiplist (by pointer structure and within
nodes). Given a cache-line size 𝑍 and desired node size 𝐵 = Θ(𝑍 ),
the B-skiplist’s promotion probability is generally set to 𝑝 = Θ(1/𝐵).
In theory, the expected number of elements per node is Θ(𝐵), but
in a B-skiplist with 𝑛 elements, the maximum number of elements
in a node is Θ(𝐵 log𝑛) w.h.p. [5, 6]. Golovin’s original theoretical
paper on B-skiplists [12] does not address how to handle this case
in practice, but one straightforward solution is table doubling when
the node becomes full.

The block structure depends on promoted height of each element
in the B-skiplist. The header key of a node in a B-skiplist is the first
(and smallest) element in that node. By construction, every header
in a node at some level ℓ has been promoted to level ℓ + 1.

Figure 3 illustrates the node and pointer structure of a B-skiplist.
Just as in a skiplist, each node has a next pointer pointing to the
next node. Given a node x, all keys in x are smaller than the header
key of x->next. Furthermore, each internal node (at level ℓ > 0)
contains an array of 𝐵 down pointers (one per key in the node), each
pointing to the corresponding node at the level below.
Bounds. In the external-memory model described in Section 1,
given a cache-line size 𝑍 , a B-skiplist with 𝑛 elements and node
size 𝐵 = Θ(𝑍 ) supports finds and inserts in Θ(log𝑍 (𝑛)) cache-line
transfers in expectation (matching B-tree bounds). Furthermore,
range queries with 𝑟 elements in the range take Θ(log𝑍 (𝑛) + 𝑟/𝑍 )
cache-line transfers in expectation. However, finds and inserts take
Θ(log𝑛) cache-line transfers in the worst case w.h.p., matching the
bounds of a non-blocked skiplist.
Operations. The left-to-right and top-to-bottom pointer traversal
in a B-skiplist during finds and inserts are similar to operations in a
skiplist. The main difference is that traversals must look at multiple
elements within a single node and determine which down pointer
to follow at an internal nodes.

To find an element k in a B-skiplist, the traversal begins at a
curr node initialized to the upper left sentinel (with header −∞),
just as in the regular skiplist. The search then examines the header
of curr->next. If it is less than k, the curr node is updated to
curr->next. We repeat this left-to-right traversal until the header

of curr->next is greater than k. At that point, we search within
curr for the pred element and follow it’s down pointer. The search
continues in this way until we reach the leaf level, at which point
we determine if k is present. The main difference from a traditional
skiplist is that the pred element may be in the same node as k.

To insert an element in a B-skiplist, we first perform a find-like
traversal to find all the pred elements at each level. However, the
node-modification operations during a B-skiplist insert are similar
to those in a B-tree. Let ℎ denote the height at which the key to
be inserted k is promoted to. If it not promoted (i.e., ℎ = 0), we
can simply add it to the same node its pred element resides in and
shift all subsequent elements in the node one slot down. However,
if it is promoted (i.e., ℎ > 0), we must perform a split at levels
ℓ = 0, 1, . . . , ℎ − 1. Let old_node be the node with pred. A node
split in a B-skiplist creates a new_node with k as the header and
copies all elements (and their down pointers, if the split occurs at
an internal node) in old_node greater than pred (and also greater
than k) after k. To link in the new node, we set new_node->next =
old_node->next and old_node->next = new_node.
Open problem.Golovin’s paper on B-skiplists does not address the
order of levels in which an element is inserted (i.e., starting from the
top or the bottom) [12]. However, most traditional skiplist insertion
algorithms insert elements in a “bottom-up” fashion - they link in
new nodes starting from the leaf level up until themaximum level an
element is to be promoted to [15, 16, 27, 28]. A similar algorithm for
B-skiplists would perform a find to the bottom level, keeping track
of the affected nodes along the way, and insert the element starting
from the leaf level, performing splits and adjusting pointers on the
way up as necessary to always maintain the inclusion invariant.

2.3 Concurrency control primitives
Hand-over-hand locking.Next, we will review the classical hand-
over-hand (HOH) fine-grained locking scheme (also known as latch
crabbing in databases) for sorted singly-linked lists [17], which we
will be building upon in later sections. HOH traverses a list while
holding at most two locks at a time, starting at the head node of the
linked list, then acquiring the lock on the successor before releasing
the lock on the predecessor. After locking a node curr, it is safe to
access curr->next to either perform a comparison with a target
key (e.g., for a search), or to see whether we have reached the end
of the list. During inserts, a traversal must hold two locks at a time
to link in a new node in the correct place between a node curr
and curr->next. HOH locking can also be extended to skiplists
because skiplists are simply towers of linked lists.
Reader-writer locks. Finally, we will review reader-writer locks
(RW locks) [8], as we will use them as the core synchronization
primitive in the proposed concurrent B-skiplist. RW locks enable
concurrent access for read-only operations but exclusive access
for write operations. Given a RW lock, a thread can either call
read_lock() to access it in shared read mode, or write_lock()
to access it in exclusive write mode. Multiple threads can read the
data in parallel if they all hold the lock in read mode, but all other
threads must wait if a thread holds the lock in write mode.

RW locks are the foundation of many concurrency control pro-
tocols in B-trees, including the classical optimistic concurrency
control (OCC) [19].

2025-06-18 11:39. Page 4 of 1–10.



Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Bridging Cache-Friendliness and Concurrency:
A Locality-Optimized In-Memory B-Skiplist Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Levels

−∞ 7

−∞ 4 7 22

∞

∞

∞

−∞ 2 4 6 7 8 13 15 22 34 87 89

2

1

0

Insert(30) at height = 1

−∞ 7

−∞ 4 7 22 30

∞

∞

∞

−∞ 2 4 6 7 8 13 15 22 34 87 89

2

1

0

−∞ 7

−∞ 4 7 22 30

−∞ 2 4 6 7 8 13 15

2

1

0 ∞

∞

∞

22 34 87 8930

30

30

Figure 4: Example of a top-down insertion of key k = 30 and
height ℎ = 1 into a B-skiplist with node size 𝐵 = 4. The dotted
box represents the current node visited during the traversal,
the blue dashed lines denote the pointers followed during
the top-down traversal, and the blue cells represent the cells
written during the insertion.

3 Top-Down Insertion Algorithm
This section presents the top-down insertion algorithm that will
form the basis of the concurrent B-skiplist in the next section.
For ease of understanding, we will first describe the algorithm
serially and show that it results in the same B-skiplist structure as
the original “bottom-up” insertion algorithm. In the next section,
we will introduce a corresponding top-down concurrency control
scheme. Furthermore, we will show that the proposed insertion
algorithm achieves the same asymptotic runtime bounds of the
theoretical B-skiplist. For simplicity, we will describe it for keys
only, but storing associated values involves only updating the leaf
level. We will initially describe the insertion algorithm using logical
nodes for simplicity and then explain how to adapt it with fixed-size
physical nodes.

Description. At a high level, the main change in the proposed
“top-down” insertion algorithm compared to existing “bottom-up”
algorithms is the order in which new elements are added to the
skiplist. Although the distinction about the order of insertion into
levels is subtle, it has important implications for the traversal pat-
tern, and as we shall see in Section 4, for CC mechanisms.

The goal of the top-down algorithm is to complete insertions in
one pass of the skiplist without revisiting nodes by taking advantage
of the skiplist property that the height at which an element is
promoted to is determined upfront and is independent of the current
structure. In contrast to promotions in a B-tree, which depend on
the current structure and fullness of the nodes, element promotions
in a B-skiplist depend only on a sequence of random coin flips.

Rather than traversing down to the leaf level and then linking
in elements from bottom to top, as in most skiplist insertion algo-
rithms, we propose to insert elements starting from the highest
level at which they are promoted and ending with the leaf level.
Therefore, an insertion is finished once the traversal reaches the
leaf level and performs a write at the relevant node.

In contrast, as described in Section 2, a “bottom-up” insertion
algorithm for B-skiplists would first insert the element at the leaf
level and work its way up the levels, performing splits as necessary

until the level that the element should be promoted to. Such an
algorithm requires a “top-down” read-only pass to the leaf level,
and then a “bottom-up” write pass from the leaves upwards to insert
the element into any relevant level(s). With a bottom-up strategy,
an insertion is not necessarily complete once the traversal reaches
the leaf level, since the element may be promoted to higher levels.

Concretely, suppose we are inserting an element k that will be
promoted to level ℎ ≥ 0 as determined by random coin flips. We
traverse the B-skiplist from top to bottom starting at the leftmost
sentinel at the top level as described in Section 2. If the traversal is
currently on some level ℓ > ℎ, the element kwill not appear on ℓ , so
the search order is exactly the same as an original B-skiplist find.
By following next and down pointers, we will eventually reach level
ℎ, where we will write k into the same node as its predecessor pred
at level ℎ. If ℎ = 0, the insertion is complete.

The main challenge comes when the element k is promoted to
level ℎ > 0 because the corresponding down pointer should point
to a new node (due to a split) at level ℎ − 1 that has not yet been
created in a naive top-down traversal. Recall from Section 2 that in a
B-skiplist, every header element in a node at level 𝑖 must have been
promoted to level 𝑖 +1. It is clear which node to set the down pointer
to with a “bottom-up” algorithm, because the corresponding node
has been created at level ℎ − 1 before the down pointer at level ℎ
needs to be set. However, with the proposed “top-down” algorithm,
the node with the new element k has not yet been created at level
ℎ − 1 since we are going from ℎ down to 0.

We can resolve the issue by again exploiting the property of B-
skiplist insertions that the height of every key is determined upfront
to allocate all the nodes in advance that will be created during an
insertion. That is, since by construction, an element promoted to
height ℎ > 0 will generate new nodes at levels 0, 1, . . . , ℎ − 1, we
can allocate ℎ new nodes with k as the header at the start of any
insertion before any interaction with the skiplist at all. If ℎ > 1,
we can link these preallocated nodes together in a stack via down
pointers in non-leaf nodes. Therefore, we can fill in the appropriate
slot in the down pointer array at level ℎ with a pointer to the top of
the preallocated stack of new nodes.

To determine where to splice in the other new nodes in levels
0, 1, . . . , ℎ − 1, we continue the traversal level-by-level. Let us con-
sider the levels in turn, starting with level ℎ − 1. Just as it has in
the higher levels, the traversal will follow the down pointer corre-
sponding to the prev element in level ℎ which will point to some
node at level ℎ − 1. At level ℎ − 1, the traversal will proceed left-
to-right until we find some node x such that x->header < k but
x->next->header > k. Let n be the preallocated node destined to
be at level ℎ − 1. The insert should move all elements greater than k
in node x to n. The new node n is then linked into the B-skiplist by
setting n->next = x->next and x->next = n. The insertion then
proceeds in this way until it reaches the leaf level by following the
down pointer of the last element in x, which is the largest element
at that level less than k. The element k will appear in the correct
nodes with the correct structure at the end of this top-downmethod
with splits on the way down.

Figure 4 contains a worked out example of a top-down insertion.
Notice how in the example, since the element is promoted to height
ℎ = 1, the corresponding node at level 0 is allocated upfront and
linked in with down and next pointers at levels 1 and 0, respectively.

2025-06-18 11:39. Page 5 of 1–10.



Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Correctness and bounds. The remainder of the section will de-
scribe the differences resulting from the top-down insertion algo-
rithm and how they do not affect the B-skiplist’s correctness or
asymptotic time bounds.

The main change with the proposed top-down insertion algo-
rithm is a slight relaxation in the inclusion invariant, or the property
that every element present in level ℎ must also be present at all
lower levels, only during insertions. It still preserves the property
upon every insertion’s completion by linking in the preallocated
new nodes via down and next pointers.

The inclusion invariant is necessary for the B-skiplist to achieve
its asymptotic bounds, because the bounds come from the expected
number of levels and the expected number of nodes traversed in
each level. These properties are derived from the probabilistic coin
flips that determine each element’s height in the B-skiplist. How-
ever, after each insertion, the pointer structure in the B-skiplist
with the top-down insert algorithm is identical to what it would
have been with a bottom-up algorithm that links in nodes starting
from the leaf level. Therefore, both the number of levels and the
number of nodes traversed per level are unaffected.

Fixed-size nodes.Asmentioned in Section 1, due to the B-skiplist’s
randomized structure, any practical B-skiplist implementation must
handle the case where the number of elements in a node exceeds
some fixed-size array allocation. The number of keys that are sup-
posed to be in a node may exceed a fixed bound, depending on
the sequence of coin flips. Given a B-skiplist with 𝑛 elements and
promotion probability 𝑝 = 1/𝐵, the worst-case number of elements
in a given node is Θ(𝐵 log𝑛) w.h.p. Therefore, it is highly likely
that there will be nodes that exceed any fixed size Θ(𝐵).

The naive solution of table doubling in nodes enables all keys
meant for a node to fit in the corresponding array, but leads to
suboptimal performance of insertions. As mentioned in Sections 1
and 2, w.h.p., there is a node in the B-skiplist with 𝑘 = Θ(𝐵 log𝑛)
elements, so the worst-case insertion cost in a B-skiplist is Θ(log𝑛)
cache-line accesses w.h.p.

To alleviate this issue, we modify the B-skiplist design to require
fixed-size node allocations, which may potentially result in node
overflow splits (i.e., node splits due to overflow) in addition to
promotion splits due to randomization. If nodes were allowed to
grow arbitrarily large, the worst-case number of elements moved
(i.e., shifted to maintain sorted order) during an insert is Θ(𝐵 log𝑛),
which would take Θ(log𝑛) cache misses. However, by requiring
that the nodes have at most 𝐵 elements, the number of element
moves in any node is at most 𝐵.

The nodes created from overflow splits do not affect the cor-
rectness of inserts or searches, as operations in the B-skiplist still
follow a left-to-right and top-to-bottom traversal order. As men-
tioned in Section 1, the choice of fixed-size nodes does not affect
the theoretical bounds, because a query would still have to perform
Θ(log𝑛) cache-line transfers in the worst case w.h.p. However, min-
imizing the cost of inserts is important for practical efficiency, as
element moves must be linear in the node size, while queries can
skip over parts of the node e.g., via binary search.

4 Top-down concurrency control
This section presents a single-pass top-down concurrency con-
trol scheme for B-skiplists based on reader-writer locks and the
top-down insert scheme described in Section 3. The goal of the
proposed scheme is simplicity in the locking protocol in both the
number of top-down traversals and the number of locks held at a
time. Specifically, we will show that each operation only needs to
make a single root-to-leaf traversal. Furthermore, this traversal
only holds a constant number of locks in at most two levels of the
B-skiplist at a time. Due to space reasons, we will include the proof
of deadlock-freedom in the full version.
Concurrent finds and range queries. Let us start with how to
implement concurrent finds and range queries with RW concur-
rency as an intermediate step to understanding concurrent inserts
in B-skiplists. Since finds and range queries are read-only opera-
tions, they only need to acquire locks in reader mode4. Queries
begin on the highest level at the left sentinel and proceed in a hand-
over-hand fashion left-to-right, as described in the HOH scheme
for linked lists in Section 2. When the search reaches the node
with the appropriate prev element, it acquires the child node at
the next lowest level via the down pointer using HOH locking in
a top-down fashion. Searches proceed left-to-right within a level
and top-to-down to move between one level at a time until the
query reaches the appropriate node in the leaf level that should
contain the target key. For point finds, the search is then complete
and can release all locks. In contrast, range queries acquire locks
left-to-right at the leaf level in a HOH fashion until the range is
exhausted or the search reaches the end of the skiplist.

To recap, both concurrent finds and range queries acquire RW
locks in read mode in a left-to-right and top-to-bottom order in
HOH fashion. That is, a thread holds at most two locks at a time.
Concurrent inserts. Next, we will introduce the proposed top-
down concurrency control scheme for inserts. At a high level, inser-
tions follow a similar left-to-right and top-to-bottom traversal order
to queries. However, inserts raise additional challenges, since they
potentially require structural modification operations (i.e., splits)
if elements are promoted to higher levels. Figure 5 illustrates a
worked example of the sequence of reader-writer lock acquisitions
and node updates with the top-down concurrency control protocol.

Just as in the insertion algorithm from Section 3, the proposed
top-down concurrency control scheme leverages the randomized
property of skiplists to complete insertions in one pass through the
data structure and to acquire writer locks only at the levels where
writes will occur. That is, it relies on the observation that the level to
which an element is promoted to in a B-skiplist depends only on a
sequence of random coin flips and importantly, is can be determined
upfront independently of the current structure of the skiplist.

For concreteness, suppose that we are inserting some key k that
will be promoted to level ℎ. Furthermore, suppose that we have
preallocated any new nodes that will be spliced into the skiplist as
described in Section 3. Since they are not currently linked in the
skiplist, taking their write locks will not delay any other threads.

Inserts begin at the highest level and proceed just like queries
for all levels greater than ℎ. Since there will be no writes until level

4Reader locks are necessary in mixed insert-query workloads.
2025-06-18 11:39. Page 6 of 1–10.



Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Bridging Cache-Friendliness and Concurrency:
A Locality-Optimized In-Memory B-Skiplist Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Insert(30) at height = 1

Levels

−∞ 7

−∞ 4 7 22

∞

∞

∞

−∞ 2 4 6 7 8 13 15 22 34 87 89

2

1

0 30

R

W

Levels

−∞ 7

−∞ 4 7 22 30

∞

∞

∞

−∞ 2 4 6 7 8 13 15 22 34 87 89

2

1

0 30

R

W

Levels

−∞ 7

−∞ 4 7 22 30

∞

∞

∞

−∞ 2 4 6 7 8 13 15 22 34 87 89

2

0 30

W

W

W

1

Levels

−∞ 7

−∞ 4 7 22 30

∞

∞

∞

−∞ 2 4 6 7 8 13 15 22 34 87 89

2

30

W

W

1

0
W

Levels

−∞ 7

−∞ 4 7 22 30

∞

∞

∞

−∞ 2 4 6 7 8 13 15 22

2

34 87 8930

W

0
W

Levels

−∞ 7

−∞ 4 7 22 30

∞

∞

∞

−∞ 2 4 6 7 8 13 15 22

2

34 87 8930

W
1

0
W

Levels

−∞ 7

−∞ 4 7 22 30

∞

∞

∞

−∞ 2 4 6 7 8 13 15 22

2

34 87 8930

1

0

1

W

Figure 5: Example of the insertion of element with key k = 30
and height ℎ = 1 into a B-skiplist with node size 𝐵 = 4 using
the top-down CC scheme. The locks with R and W denote
acquiring the lock in read and write mode, respectively.

ℎ, the traversal only needs to acquire locks in read mode in the
left-to-right and top-to-bottom traversal until it reaches level ℎ.

Once it has reached the appropriate node with the correct down
pointer in level ℎ + 1, the insert then acquires the lock on the child
node in write mode on level ℎ. At level ℎ, the traversal will continue
left-to-right in a HOH fashion taking locks in write mode until we
reach the node where k should be inserted (i.e., some node x such
that x->header < k and x->next->header > k). Since we have
the write lock on x, we can directly insert k in the appropriate slot.
If ℎ = 0, the insert is completed, and we can release all of the locks.

If there need to be splits at lower levels (i.e., ℎ > 0), we use HOH
locking from top-to-bottom and left-to-right. Consider the case of a
split at level ℎ − 1. To find the starting point traversal in level ℎ − 1,
we first take the write lock on the node pointed to the by down
pointer associated with the prev element in level ℎ. Just as in the
single-threaded case, the traversal will then proceed left-to-right
until we find the two nodes that the new preallocated node will

need to be inserted between. However, in the concurrent case, we
take writer locks in HOH fashion left-to-right for thread safety. The
actual split mechanism is unchanged from the serial case, and this
process is repeated until the leaf level.
Integration with fixed-size nodes. So far, we have described the
CC mechanism on logical nodes, but overflow splits do not affect
the guarantees of HOH locking. An insert still only needs to acquire
a constant number of locks at any time. The CC protocol in the
case of overflow splits is even simpler than the case of promotion
splits. Recall that if an element is promoted, the top-down scheme
acquires at most three locks at once to perform splits: one to update
the down pointer at some level ℓ and two to splice in the new node
between two existing nodes at level ℓ − 1). In overflow splits, there
is no need for the lock to be held on level ℓ because there is no down
pointer to the new node, so we only need to hold the two locks on
the nodes that we are splicing the new node between.
Correctness and deadlock-freedom. The correctness of the pro-
posed HOH-based locking scheme follows directly from existing
theory about HOH locking in linked lists and skiplists [17]. To
insert an element into a node without a split, just acquiring the
write lock on that node is sufficient. To split a node and insert a
new node between two existing ones, acquiring the write lock on
both the predecessor node and its next node is sufficient. There is
a slight relaxation of the maximum number of locks held at once
from two to three during splits. However, locks are held on at most
two levels at once.

Finally, the proposed top-down concurrency scheme is deadlock-
free because there is a total ordering on locks from left-to-right
within levels and then top-to-bottom between the levels, thereby
avoiding circular wait.

5 Evaluation
This section evaluates the proposed concurrent B-skiplist on the
YCSB application benchmark [7] compared to several state-of-the-
art concurrent skiplist- and tree-based indices. As mentioned in Sec-
tion 1, we evaluate all indices in terms of both throughput and
latency. Due to space limitations, we omit the raw data tables, but
will include them in the full version of the paper.
Result summary. At a high level, the B-skiplist achieves 2×–9×
higher throughput and 3.5×–103× lower latency than non-cache-
optimized concurrent skiplists. Furthermore, the B-skiplist achieves
0.7×–7.5× throughput on point workloads and 0.7× throughput on
range workloads compared to tree-based indices.
Systems setup. All experiments were run on a server with 64-core
2-way hyperthreaded Intel Xeon Gold 6338 CPU @ 2.00GHz with
1008 GB of memory. The server has a 3 MiB L1 data cache, a 2 MiB
L1 instruction cache, a 80 MiB L2 cache and a 96 MiB L3 cache. We
ran all experiments with 64 physical cores and 128 hyperthreads.

All times are the median of 5 trials after one warm-up trial. To
measure latency, each thread measures the average time taken for
a batch of ten operations5 and stores it in a thread-safe vector. This
allows us to sort and calculate the latency at each percentile after
running each benchmark.

5We measure the average of 10 operations instead of individual operation to preserve
the contention between threads.

2025-06-18 11:39. Page 7 of 1–10.



Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Workload Description
Load 100% inserts from empty
A 50% finds, 50% inserts
B 95% finds, 5% inserts
C 100% finds
E 95% short range iterations (max_len = 100), 5% inserts

Table 2: YCSB workload descriptions.
We measured the cache misses in Table 1 with perf.

Workloads. Table 2 presents details of the core workloads from
YCSB [33]. We tested workloads6 A, B, C, and E from the core YCSB
workloads generated with RECIPE [20].

We follow the standard YCSB procedure which consists of two
phases: 1) the load phase-where elements are inserted into the data
structure-and 2) the run phase-where operations are executed ac-
cording to the workload’s find/insert ratio. Each workload consists
of 100 million (100M) elements inserted during the load phase, fol-
lowed by 100M operations executed during the run phase, both
phases are run concurrently.

We evaluate each workload under both uniform random and
zipfian distribution in the run phase. In the uniform workload, the
elements in both the load and run phases are generated from a uni-
form distribution. In the zipfian workload, the load phase elements
are generated from a uniform distribution, while the elements in
the run phase are generated from a zipfian distribution.

We omit the results on the zipfian distirbution due to space limi-
tations, but the results were similar (on average within 20%) to the
uniform distribution.Wewill include results from both distributions
in the full paper.
B-skiplist setup.We implemented the concurrent B-skiplist in C++
with an open-source reader-writer lock library [2]. The test driver
executes concurrent operations using pthreads [25]. We ran the
B-skiplist with 8-byte keys and 8-byte values (for 16-byte key-value
pairs). We set the max height of the B-skiplist to 5 in our tests.

We compiled the B-skiplist using g++ 11.4.0 with -O3.
B-skiplist sensitivity analysis.We performed a parameter sweep
over promotion probability and node size in the B-skiplist to em-
pirically determine which settings yield the best performance on
the YCSB workloads. Due to space limitations, we will include the
complete data in the full version of the paper. Golovin’s theoretical
paper on B-skiplists proposes a scaling factor, some constant 𝑐 , on
the promotion probability for 𝑝 = 1/𝑐𝐵. Therefore, for each tested
node size we also experiment with 𝑐 ∈ {0.5, 1.0, 2.0}. size In theory,
any constant 𝑐 should suffice to achieve the theoretical randomized
B-skiplist bounds [12].

Based on the results of this sensitivity analysis, we set the node
size in the B-skiplist to 2048 bytes (i.e., 128 key-value pairs) and
𝑐 = 0.5, for promotion probability 𝑝 = 1/(0.5 × 128) = 1/64.

5.1 Comparison to skiplist-based indices
In this section, we evaluate the B-skiplist against No Hot Spot Skip
List [9], Java ConcurrentSkipListMap [18], and Facebook Folly’s
ConcurrentSkipList [1] on the YCSB workloads [33] and report the
results in Figures 1 and 6.

6We omit workload D from YCSB because it benchmarks the read-latest operation,
which is not the focus of this work.

50 90 99 99.9
100
101
102
103

Percentile

La
te
nc
y
(𝜇
s) B-skiplist Folly SL

Java SL NHSSL

Figure 6: Latencies of skiplist-based indices at different per-
centiles in YCSB workload A with uniform random keys.

Systems setup. Java ConcurrentSkipListMap (JSL) implements
a concurrent skiplist using a tree-like 2D linked skiplist [23].All
operations except range queries are done natively. We implement
range queries with the subMap interface.

Facebook’s Folly (FLY) library provides a C++ concurrent skiplist7.
We used the native interface for all point operations and the iterator
interface for range queries (since it does not have native support).
Folly’s skiplist does not support values so we store only the keys.

No Hot Spot Skip List8 (NHS) is a concurrent, lock free skiplist
in C++ that relies on a background adaptation thread to maintains
the structure of the skiplist and manage garbage collection. This
includes rebalancing the upper index level to ensure traversals
can be done in 𝑂 (log𝑛) time. NHS takes in a sleep time parameter
that determines how frequent the background thread checks the
index and modifies it. In the load phase, we set this parameter to
a relatively small value (100 microseconds) to ensure the index is
frequently balanced. After the load phase, we must wait for the
background thread to balance the height of the tree to lg𝑛 to ensure
that operations in the run phase achieve the desired performance.
In the run phase, we set the sleep time higher to 1 second to ensure
the background thread does not stall operations. We do not count
the rebalance time between the load and run phases.

We compiled FLY and NHS using g++ 11.4.0 with -O3 and Java
ConcurrentSkipListMap using javac 11.0.25.
Discussion. Figures 1 and 6 illustrate the throughputs and various
percentile latencies of the skiplists.

As shown in Figure 1, the B-skiplist significantly improves upon
the throughput of the other skiplists on all operations. For the
load phase (all inserts), B-skiplist achieves about 2×, 11×, and 2.1×
higher throughput, respectively, compared to the Java skiplist (JSL),
the no hot spot skiplist (NHS), and the Folly skiplist (FLY). On
point workloads (Workloads A, B, and C) with finds/inserts, the
B-skiplist is about 4.6× – 6.6× faster than JSL, 5× – 9× faster than
NHS, and 3.1× – 3.3× faster than FLY. For range queries (Workload
E), the B-skiplist is about 9× faster than JSL and about 6× faster
than NHS and FLY. All systems achieves better throughputs on the
zipfian workloads than on uniform workloads, but the their relative
performance to each other remains almost the same.

Additionally, as shown in Figure 6, the B-skiplist achieves lower
latency across all workloads in all tested percentiles (50%, 90%, 99%,
and 99.9%). The most competitive non-blocked skiplist is the one

7https://github.com/facebook/folly/blob/main/folly
8https://github.com/wangziqi2016/index-microbench/tree/master/nohotspot-
skiplist

2025-06-18 11:39. Page 8 of 1–10.

https://github.com/facebook/folly/blob/main/folly
https://github.com/wangziqi2016/index-microbench/tree/master/nohotspot-skiplist
https://github.com/wangziqi2016/index-microbench/tree/master/nohotspot-skiplist


Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Bridging Cache-Friendliness and Concurrency:
A Locality-Optimized In-Memory B-Skiplist Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Load A B C E
0

0.5
1

1.5
1

Workload

N
or
m
al
iz
ed

pe
rf
or
m
an
ce B-skiplist B-tree MassTree

Figure 7: Normalized throughput (ops/s) of tree-based indices
relative to the B-skiplist with uniform random keys.

from Folly, which has at least 3.5× and often at least 3.7× higher
latency compared to the B-skiplist in the different percentiles.

The B-skiplist achieves better throughput and latency compared
to unblocked skiplists because it reduces cache misses with better
spatial locality in the nodes, as shown in Table 1. The folly skiplist,
the fastest of the state-of-the-art skiplists, incurs between 3.2×-
5.6× more cache misses compared to the B-skiplist. Furthermore,
the B-skiplist maintains the simple structure and CC schemes that
make the skiplist a popular choice for in-memory indexing.

5.2 Comparison to tree-based indices

Systems setup.We compare the B-skiplist with a high-performance
concurrent B+-tree9 [32] (a common B-tree variant) based on op-
timistic concurrency control [19]. The default configuration for
the B+-tree sets node_size = 1024 bytes. Both the concurrent
B-skiplist and concurrent B+-tree use the same RW lock.

We also compare the B-skiplist with Masstree10 [22], a cache
friendly B+-tree variant. It utilizes an optimistic concurrency scheme
as well. There is native support for all YCSB operations.

We compiled the B+-tree and Masstree with g++ 11.4.0 and -O3.
Discussion. Figures 7 and 8 compare the B-skiplist to tree-based
indices on throughput and latency, respectively. We tested both
uniform and zipfian datasets but only illustrate the performance
on uniform as the results are similar.

Overall, we find that the B-skiplist achieves competitive (between
1×–1.4× higher) throughput compared to the B-tree and between
1×–2.1× higher throughput thanMasstree on point workloads (load
and A-C). We expect the B-tree and B-skiplist to be similar on read-
heavy workloads because the B-skiplist has a similar height and
node size compared to the B-tree. Furthermore, the B-tree only
has to read one node per level, while the B-skiplist may have to
take horizontal steps (following next pointers) along each level.
Concretely, we found that on average, the B-skiplist takes about
1.7 horizontal steps per level in workloads A-C. As a result, the
B-skiplist has a slightly lower throughput (within 0.9×) compared
to the B-tree on workload C.

The B-skiplist achieves the most consistent speedups (1.3×–2.1×
higher throughput) over tree-based indices on insert-heavy work-
loads (load and A). To understand why, we will first briefly review
optimistic concurrency control (OCC) [19], the CC scheme in both
the B-tree and Masstree. OCC is a classical CC scheme for B-trees

9https://github.com/wheatman/BP-Tree/tree/main/tlx-plain/container
10https://github.com/kohler/masstree-beta

50 90 99 99.9

50
100
150
200

Percentile

La
te
nc
y
(𝜇
s) B-skiplist

B-tree
Masstree

Figure 8: Percentile latencies of the B-skiplist and tree-based
indices on YCSB workload A with uniform random keys.

based on RW locks that leverages the observation that most inser-
tions only affect the leaf level. Almost all insertions under OCC
make one root-to-leaf pass with reader locks on the internal nodes.
However, if an element must be promoted, the insert retires back
to the root, taking write locks on all nodes on the way down. In
contrast, the top-down CC scheme in the B-skiplist is guaranteed
to always make one pass from root-to-leaf and to take write locks
only on the levels that the element is promoted to. To measure this
difference, we counted the number of times the root lock was taken
in write mode (blocking all other operations) during the load phase
and workload A in the B+-tree and B-skiplist. In the load phase, the
B+-tree root write lock was taken 26K times, compared to 7 times
in the B-skiplist. In workload A, the B-tree took the write lock on
the root about 8.3K times, compared to 3 times in the B-skiplist. The
B+-tree also exhibits higher latency in the 99th percentile compared
to the B-skiplist due to the B+-tree’s retires back to the root.

On the other hand, the B-tree achieves about 1.4× higher through-
put than the B-skiplist on range queries (Workload E). Asmentioned
earlier, although the B-skiplist has Θ(𝐵) elements per node in ex-
pectation, the number of elements actually in a logical node can
vary by up to a factor of 𝑂 (log𝑛). Therefore, the average density
(number of elements in a node) is lower in the B-skiplist compared
to the B+-tree, which deterministically splits nodes when they be-
come full. To measure this difference, we counted the number of
nodes at the bottom level traversed in both the B-skiplist and B+-
tree during workload E. On average, the B-skiplist accesses about 2
nodes per range query while the B+-tree accesses only about 1.5
nodes per range query. We note that in-memory indexes are tradi-
tionally optimized for point (OLTP) workloads and range queries
are often an optional function. Future work involves improving
range queries in B-skiplists by improving the average node density.

5.3 Strong Scaling
Figures 9 and 10 shows the scaling performance of B-skiplist, Folly,
B-tree, JSL, and Masstree on YCSB workload A and C with uniform
random keys. We omit NHS because it times out on lower thread
counts.

On the write-heavy workload A, all systems except Masstree
scale number of threads increases. Masstree’s performance peaks at
32 threads and declines afterward. On 128 threads, the B-skiplist, B-
tree, and Folly skiplist all achieve about 35×−38× speedup, while JSL
achieves about 45× speedup. Although JSL achieves higher parallel
scalability, its overall throughput is lower than the C++-based data
structures because it does not employ blocking. In contrast, on

2025-06-18 11:39. Page 9 of 1–10.

https://github.com/wheatman/BP-Tree/tree/main/tlx-plain/container
https://github.com/kohler/masstree-beta


Un
pu
bli
she
d w

ork
ing

dra
ft.

No
t fo
r d
istr
ibu
tio
n.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1 2 4 8 16 32 64 128

10

20

30

40

50

Num. Threads

Sp
ee
du

p

B-skiplist Folly
JSL B-tree

Masstree

Figure 9: Strong scaling of various systems in terms of
throughput on YCSB workload A.

1 2 4 8 16 32 64 128

10
20
30
40
50
60
70

Num. Threads

Sp
ee
du

p

B-skiplist Folly
JSL B-tree

Masstree

Figure 10: Strong scaling of various systems in terms of
throughput on YCSB workload C.

the read-heavy workload C, all systems achieve higher speedup
compared to workload A because there are no writes and therefore
less lock contention. On workload C, all systems achieve between
50 × −60× speedup on 128 threads.

6 Conclusion
Wepresent the B-skiplist, a high-performance concurrent in-memory
index based on the skiplist data structure. The proposed concurrent
B-skiplist adapts the theoretical description of a B-skiplist [12] for
practical considerations to minimize data movement and mitigate
the probabilistic worst case of element moves. To take advantage of
parallel resources, we propose a top-down insertion algorithm that
completes insertion in one pass and a corresponding simple yet
effective CC scheme. The B-skiplist inherits the simple structure
that make the skiplist a popular choice for in-memory indexing.

The empirical evaluation demonstrates that the B-skiplist achieves
between 2×–9× higher throughput and between 3.5×–103× lower
99th percentile latency compared to popular state-of-the-art con-
current skiplist implementations such as those from Facebook’s
folly library and the Java concurrent skiplist library. These results
suggest that the B-skiplist is a good candidate for high-performance
in-memory indexing because it resolves locality issues in skiplists
while minimizing CC overhead.

For futurework, we plan to integrate the B-skiplist into key-value
stores like RocksDB and LevelDB to evaluate its impact on appli-
cation performance. Additionally, its high cache locality makes it
well-suited for disk-based indexes. With its strong theoretical guar-
antees and practical efficiency, we anticipate that B-skiplist could
match or even surpass traditional skiplists in modern databases.

References
[1] [n. d.]. folly. https://github.com/facebook/folly. Last accessed 2/26/25.

[2] [n. d.]. ParallelTools. https://github.com/wheatman/ParallelTools. Last accessed
1/16/25.

[3] Alok Aggarwal and Jeffrey S. Vitter. 1988. The input/output complexity of sorting
and related problems. Commun. ACM 31, 9 (Sept. 1988), 1116–1127.

[4] Rudolf Bayer and Edward M. McCreight. 1972. Organization and Maintenance of
Large Ordered Indexes. Acta Informatica 1, 3 (1972), 173–189.

[5] Michael A Bender, Jonathan W Berry, Rob Johnson, Thomas M Kroeger, Samuel
McCauley, Cynthia A Phillips, Bertrand Simon, Shikha Singh, and David Zage.
2016. Anti-persistence on persistent storage: History-independent sparse tables
and dictionaries. In PODS. 289–302.

[6] Michael A Bender, Martin Farach-Colton, Rob Johnson, Simon Mauras, Tyler
Mayer, Cynthia A Phillips, and Helen Xu. 2017. Write-optimized skip lists. In
PODS. 69–78.

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In SoCC. 143–154.

[8] Pierre-Jacques Courtois, Frans Heymans, and David Lorge Parnas. 1971. Concur-
rent control with “readers” and “writers”. Commun. ACM 14, 10 (1971), 667–668.

[9] Tyler Crain, Vincent Gramoli, and Michel Raynal. 2013. No hot spot non-blocking
skip list. In ICDCS. IEEE, 196–205.

[10] Mikhail Fomitchev and Eric Ruppert. 2004. Lock-free linked lists and skip lists.
In PODC. 50–59.

[11] Keir Fraser. 2004. Practical lock-freedom. Technical Report. University of Cam-
bridge, Computer Laboratory.

[12] Daniel Golovin. 2010. The B-skip-list: A simpler uniquely represented alternative
to B-trees. arXiv preprint arXiv:1005.0662 (2010).

[13] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Peter J.
Weinberger. 1994. Quickly generating billion-record synthetic databases. In
SIGMOD. 243–252.

[14] HBase. [n. d.]. https://hbase.apache.org/. Last accessed 10/20/2022.
[15] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. 2006. A provably

correct scalable concurrent skip list. In OPODIS, Vol. 103.
[16] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. 2007. A simple

optimistic skiplist algorithm. In SIROCCO. Springer, 124–138.
[17] Maurice Herlihy, Nir Shavit, Victor Luchangco, and Michael Spear. 2020. The art

of multiprocessor programming. Newnes.
[18] Java. [n. d.]. https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/

ConcurrentSkipListSet.html. Last accessed 1/3/2025.
[19] H.T. Kung and John T. Robinson. 1981. On optimistic methods for concurrency

control. ACM Transactions on Database Systems (TODS) 6, 2 (1981), 213–226.
[20] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-

dambaram. 2019. RECIPE: Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In SOSP. Ontario, Canada, 462–477.

[21] LevelDB. [n. d.]. https://github.com/google/leveldb. Last accessed 10/20/2022.
[22] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness

for fast multicore key-value storage. In EuroSys. 183–196.
[23] Maged M. Michael. 2002. High performance dynamic lock-free hash tables and

list-based sets. In SPAA. 73–82. doi:10.1145/564870.564881
[24] Yedam Na, Bonmoo Koo, Taeyoon Park, Jonghyeok Park, and Wook-Hee Kim.

2023. ESL: A High-Performance Skiplist with Express Lane. Applied Sciences 13,
17 (2023), 9925.

[25] Bradford Nichols, Dick Buttlar, Jacqueline Farrell, and Jackie Farrell. 1996.
Pthreads programming: A POSIX standard for better multiprocessing. " O’Reilly
Media, Inc.".

[26] Kenneth Platz, Neeraj Mittal, and S Venkatesan. 2019. Concurrent unrolled
skiplist. In ICDCS. IEEE, 1579–1589.

[27] William Pugh. 1990. Concurrent maintenance of skip lists. Citeseer.
[28] William Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees.

Commun. ACM 33, 6 (1990), 668–676.
[29] RocksDB. [n. d.]. http://rocksdb.org/. Last accessed 10/20/2022.
[30] Stefan Sprenger, Steffen Zeuch, and Ulf Leser. 2016. Cache-sensitive skip list:

Efficient range queries on modern CPUs. In Data Management on New Hardware.
Springer, 1–17.

[31] Zhongle Xie, Qingchao Cai, HV Jagadish, Beng Chin Ooi, and Weng-Fai Wong.
2017. Parallelizing skip lists for in-memory multi-core database systems. In ICDE.
IEEE, 119–122.

[32] Helen Xu, Amanda Li, Brian Wheatman, Manoj Marneni, and Prashant Pandey.
2023. BP-Tree: Overcoming the Point-Range Operation Tradeoff for In-Memory
B-Trees. Proc. VLDB Endow. 16, 11 (July 2023), 2976–2989. doi:10.14778/3611479.
3611502

[33] YCSB. [n. d.]. Core Workloads. https://github.com/brianfrankcooper/YCSB/wiki/
Core-Workloads. Last accessed 2/15/2023.

[34] Jingtian Zhang, SaiWu, Zeyuan Tan, Gang Chen, Zhushi Cheng,Wei Cao, Yusong
Gao, and Xiaojie Feng. 2019. S3: a scalable in-memory skip-list index for key-value
store. Proceedings of the VLDB Endowment 12, 12 (2019), 2183–2194.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

2025-06-18 11:39. Page 10 of 1–10.

https://github.com/facebook/folly
https://github.com/wheatman/ParallelTools
https://hbase.apache.org/
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentSkipListSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentSkipListSet.html
https://github.com/google/leveldb
https://doi.org/10.1145/564870.564881
http://rocksdb.org/
https://doi.org/10.14778/3611479.3611502
https://doi.org/10.14778/3611479.3611502
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Skiplist structure and operations
	2.2 B-skiplist structure and operations
	2.3 Concurrency control primitives

	3 Top-Down Insertion Algorithm
	4 Top-down concurrency control
	5 Evaluation
	5.1 Comparison to skiplist-based indices
	5.2 Comparison to tree-based indices
	5.3 Strong Scaling

	6 Conclusion
	References

