
A Work-Optimal Parallel Algorithm for Aligning
Sequences to Genome Graphs

Aranya Banerjee∗, Daniel Gibney†, Helen Xu∗, and Srinivas Aluru∗
∗School of Computational Science and Engineering, Georgia Institute of Technology

aranyabanerjee@gatech.edu, aluru@cc.gatech.edu, hxu15@gatech.edu
†Department of Computer Science, University of Texas at Dallas

daniel.gibney@utdallas.edu

Abstract—Representing genetic variations among a population
of individuals in the form of a genome graph, and using the graph
as a reference instead of the genome of a single individual, are
central techniques in the fast-emerging area of pangenomics. A
fundamental problem in pangenomics is to align a DNA sequence
simultaneously against all reference genomes through sequence-
to-graph alignment. The sequential approach to the problem uses
dynamic programming and takes O(m|E|) time, where m is the
length of the DNA sequence that is aligned and |E| is the number
of edges in the genome graph.

In this paper, we present ParSGA, the first parallel algorithm
for the sequence-to-graph alignment problem. Prior works on
parallelization only addressed the embarrassingly parallel prob-
lem of mapping numerous DNA sequences independently, but
each sequentially, to the genome graph. In contrast, ParSGA
aligns a single sequence in parallel, which is required in cases
involving long or ultra-long DNA sequences, or in applications
involving successively mapping and incorporating DNA sequences
into an evolving graph, or to improve available parallelism for
multiple sequence-to-graph alignments even further. ParSGA is
work-optimal, and its design provides a high degree of paral-
lelism. On a 128-core AMD Epyc processor, ParSGA achieves
81× speedup compared to serial execution of itself, and 43×
speedup compared to the sequential algorithm, when aligning
250bp reads to human Chromosome 1 variation graph. In the
popularly used billion cell updates per second (GCUPS) metric,
ParSGA achieves 6.14 GCUPS. The C++ implementation of
ParSGA is available at https://github.com/ParBLiSS/ParSGA.

Index Terms—Alignment, genome graph, variation graph,
pangenomics, dynamic programming.

I. INTRODUCTION

Advances in rapid and inexpensive DNA sequencing have
led to the sequencing of genomes of numerous individuals in a
population, particularly for humans. Due to the low frequency
of variations compared to the size of the genome, genetic
variations among individuals are succinctly captured in the
form of a labeled graph, often referred to as the genome graph
or pangenome [1]–[6]. The deciphering of human pangenomes
is the subject of several major international projects [7], [8].

The sequence-to-graph alignment1 problem is a funda-
mental problem in utilizing genome graphs: it compares a
DNA fragment from a newly sequenced individual against
the graph to uncover known and potentially unknown genetic
variations. By comparing query sequences with a genome

1Also referred to as Pattern Matching on Labeled Graphs (PMLG) [9]

graph, sequence-to-graph alignment avoids a painstaking com-
parison of the sequence against each of the individual reference
genomes upon which the genome graph is built. Sequence-
to-graph alignment also extends to other scenarios involving
labeled graphs beyond variation graphs. For example, such
graphs can be built for any set of related genetic data, and
are used in applications involving microbial metagenomes,
sequencing reads instead of genomes, and genome assem-
bly [10], [11].

The objective of sequence-to-graph alignment is to find
a walk in a genome graph G such that its corresponding
sequence minimizes the edit distance from an input query
sequence P . More formally, the sequence-to-graph alignment
problem takes as input a genome graph G = (V,E) with |V |
nodes and |E| edges and a query sequence P of length m.

With edits only allowed in the query sequence, the problem
can be solved in O(m|E|) time using a dynamic-programming
algorithm [12], which is optimal under the Strong Exponential
Time Hypothesis [13]. If edits are allowed in the graph, either
standalone or in conjunction with edits in the query, the
problem is NP-complete [14].

Sequence-to-graph alignment has been implemented in sev-
eral software tools designed to work with genome graphs [15]–
[18]. While some tools are direct implementations of the opti-
mal dynamic programming algorithm, others utilize heuristics
such as seed-and-extend techniques to obtain good compu-
tational efficiency in practice. Nevertheless, the worst-case
complexity for optimal sequence-to-graph alignment remains
unaltered [13].

Prior works on accelerating sequence-to-graph alignment
primarily focus on using parallel resources to simultaneously
align multiple query sequences to a genome graph. Each query
sequence is aligned independently using the serial algorithm,
but multiple alignment tasks are scheduled together using
SIMD instructions or multithreading [15], [16], [19]–[24].

The query sequences, or reads, to be aligned are typi-
cally the output of next-generation sequencers. While short
reads of length 150bp-250bp produced by Illumina sequencers
are often aligned in bulk, the parallelization of a single
instance of sequence-to-graph alignment is required for long
(PacBio, 15-20 Kbp) and ultra-long (Oxford Nanopore, >1
Mbp) sequences. Particularly for Nanopore sequencers, there

mailto:aranyabanerjee@gatech.edu
mailto:aranyabanerjee@gatech.edu
mailto:aranyabanerjee@gatech.edu
mailto:daniel.gibney@utdallas.edu
https://github.com/ParBLiSS/ParSGA

A GGA

Fig. 1. Linear versus graph reference while computing a cell in the dynamic-programming table. Blue edges represent deletion operations, green edges
represent substitution operations, and pink edges represent insertion operations.

is value in quickly identifying the mapping region of the
query sequence after only sequencing a portion of it, to abort
the effort if the mapping region offers little value. There
are also applications involving successively aligning and then
incorporating DNA sequences into an evolving graph, where
the only means to parallelization is at the single query level.
Note that a parallel algorithm for sequence-to-graph alignment
can be combined with parallel algorithms for handling multiple
reads to further enhance the scaling even for applications
involving bulk sequence-to-graph alignments.

To date, there is no existing sequence-to-graph alignment
algorithm that uses multiple parallel cores, and only one
tool accelerates a single sequence-to-graph alignment with
bit-level parallelism: GraphAligner [20], [25] uses bit vector
operations to process multiple DNA bases, since only two
bits are sufficient to represent a base. Given a machine word
size w, GraphAligner achieves O(|V |+m

w |E|logw) time on
directed acyclic graphs (DAGs) and O(|V |+m|E|logw) time
on arbitrary graphs. However, it does not make use of the many
cores available in today’s shared-memory multicore machines
as it is limited to bit-level parallelism. Note that the run-time
complexity improves by a factor of O

(
w

logw

)
for DAGs but

actually degrades by a factor of O(logw) for arbitrary graphs.
Nevertheless, empirical studies show practical performance
gains of 3× to 20× depending on the genome graph.

Parallelizing sequence-to-graph alignment with multiple
cores. This paper introduces ParSGA, the first parallel algo-
rithm that aligns a query sequence to a genome graph. ParSGA
directly parallelizes the sequential dynamic programming (DP)
algorithm for sequence-to-graph alignment that we will detail
in Section II. At a high level, the DP algorithm constructs an
m×|V | DP table of cells, where each row has |V | cells, each
corresponding to a node in the genome graph. The ParSGA
algorithm proceeds row-by-row (i.e., character-by-character in
the query sequence) sequentially, but parallelizes within a row
across the graph.

The primary challenge in updating cells in parallel are

Fig. 2. An example from Navarro [26] demonstrating how insertion
propagation modifies the C values (as defined in Equation 1) for the pattern
‘TTTT’. The value C[4, v2] = 2 shows the insertion update that occurs when
considering vertex v4 again (after updating the loop).

dependencies between neighboring nodes in the graph and the
corresponding cells in both the current and previous rows, as
shown in Figure 1. Insertions, which are the appending of char-
acters to the end of the pattern, are particularly challenging, as
their effect can propagate along sequences of edges connecting
cells within the same row. Figure 2 reproduces an example by
Navarro [26] that demonstrates these difficulties. Within the
cycle pictured, for example, any vertex may possibly improve
any other vertex, so that there is no clear order of updates on
scores over which parallelization should occur.

The main insight behind ParSGA is that edges correspond-
ing to the next character in the query effectively terminate
insertion propagation, and ParSGA uses this observation to
break the genome graph into numerous small and indepen-
dent components over which the sequential algorithm can be
readily parallelized. The other types of character operations
(match/mismatch, the alignment of equal or unequal characters
on the pattern and reference, and deletion, the removal of
the last pattern character) do not depend on the graph edges
within a row, and can be easily parallelized as there are no

dependencies between the relevant cells in the previous row.

Results summary. On 128 cores, ParSGA achieves up to 43×
speedup compared to the sequential algorithm on the CHR12

graph, which has 2.63×108 edges. Furthermore, when running
on all 128 cores on the CHR1 graph, ParSGA achieves 6.14
billion cell updates per second (GCUPS), which is computed
by dividing the number of DP table cells (m|V |) by the
time in seconds. Section IV contains details about the full
evaluation, which includes scalability analysis and experiments
on genome graphs from multiple human chromosomes and
other organisms.

Contributions. The main contributions of this paper are as
follows:

• The construction and analysis of ParSGA, a work-optimal
shared-memory parallel algorithm for sequence-to-graph
alignment. That is, ParSGA performs asymtotically the
same amount of operations as the optimal serial dynamic-
programming algorithm (O(m|E|)).

• An implementation of ParSGA in C++ and OpenMP [27].
• An empirical evaluation of ParSGA on large real-world

variation graphs that demonstrates that it achieves good
efficiency and parallel speedup in practice.

II. PRELIMINARIES

This section presents notation necessary to describe the
sequence-to-graph alignment problem and its solutions. It then
formalizes the problem and reviews the classical dynamic-
programming solution. Finally, it presents the classical Com-
pressed Sparse Row (CSR) graph representation and the work-
span analysis model used to prove bounds in later sections.

A. Notation

We model genome graphs as vertex-labeled directed graphs,
although the same techniques can be applied to edge-labeled
graphs and/or undirected graphs with slight modifications. Let
G = (V,E, σ : V → Σ) denote a vertex-labeled graph over the
alphabet Σ, where σ(v) denotes the character labeling vertex
v. We assume that the length m query sequence, referred to
as pattern P [1,m] from hereonwards, also consists of only
characters from Σ. A length k − 1 walk in G is a sequence
of k vertices v1, v2, ..., vk such that (vi, vi+1) ∈ E for 1 ≤
i ≤ k− 1. Note that walks are allowed to repeat vertices. For
notation purposes in algorithms and proofs, let N−(v) and
N+(v) be the sets of inward and outward neighbors of vertex
v, and let deg−(v) = |N−(v)| and deg+(v) = |N+(v)| be
the indegree and outdegree of vertex v. Let d(u, v) be the
number of edges on the shortest path from vertex u to vertex
v. We assume that G is at least weakly connected so that
|E|≥ |V |−1. For a 2D array A, we will use A[i] to denote
the ith row of A.

2We generated genome variation graphs from human chromosome variation
data from the 1000 Genomes Project (Phase 2) [8].

B. Sequence-to-graph Alignment

We formally define the problem as follows:

Problem 1 (Sequence-to-Graph Alignment). Given a vertex-
labeled graph G = (V,E, σ : V → Σ) over alphabet Σ and
a sequence P [1,m] ∈ Σ+ , determine over all walks in G the
minimum cost of alignment with P . In the alignment, ∆del is
the cost of deleting a character from P , ∆ins is the cost of
inserting a character into P , and ∆i,v is the cost of aligning
the character at position i in P to the character at vertex v
in G.

Several interesting theoretical results have been proven
regarding sequence alignment on labeled graphs. This problem
was first addressed for the application of pattern matching in
hypertext [28]. In this early work, an algorithm was presented
that runs in time Õ(|E|m)3 on a graph G = (V,E), where the
pattern P is of length m. This was subsequently improved to
O(|E|m) time by Navarro [26]. Amir et al. [28] also demon-
strated that the problem is NP-complete when edits are allowed
to the graph. This hardness result was later strengthened to
show NP-hardness holds even for the cases where the graph
is labeled with a binary alphabet [14] and when the graph
is a de Bruijn graph [29]. Importantly, the O(|E|m)-time
algorithm is provably optimal under popular computational
complexity assumptions. In particular, it was proven that
an algorithm running in time O(|E|1−εm + |E|m1−ε) for
any constant ε > 0 would violate the Strong Exponential
Time Hypothesis (SETH) [13]. This lower bound was later
strengthened in several ways, including conditioning it on
likely weaker assumptions in complexity theory [30], and
proving that even with polynomial-time preprocessing of G,
an algorithm that can match a pattern to the graph in time
O(|E|δmβ) where δ < 1 or β < 1 would violate SETH [31].

C. Dynamic-Programming Approach

The standard dynamic-programming approach makes use of
the following recurrence:

C[0, v] = 0

C[i, v] = min
u∈N−(v)

C[i− 1, v] + ∆del

C[i− 1, u] + ∆i,v

C[i, u] + ∆ins

(1)

The approach proceeds in m stages, with stage i aligning
the character at position i in P to G. At each stage, array C of
size |V | records the best alignment score of walks ending at
each vertex v ∈ V . The operation with cost ∆i, v of aligning
the character at position i in P to the character at vertex v
in G will be referred to as a match with cost ∆match when
σ(v) = P [i], or as a mismatch with cost ∆mismatch when
σ(v) ̸= P [i], or as a substitution for both cases collectively. As
shown in Figure 1, deletions are calculated by adding deletion
cost to the cost on the vertex in the previous row, substitutions

3Õ(·) suppresses polylogarithmic factors.

are calculated by adding substitution costs to the cost on the
incoming neighbors in the previous row, and insertion costs are
calculated by adding insertion costs to the cost of the final cost
on the incoming neighbors in the current row. The process of
computing the updated cost using values from the current row
and incorporating insertions is called insertion propagation.
This is most simply implemented using a recursive procedure,
as shown in Algorithm 3, but applied to the entire graph G.

D. Compressed Sparse Row (CSR) Representation

We make use of the Compressed Sparse Row (CSR) for-
mat [32], a classical method for storing sparse graphs. CSR
stores vertex neighborhoods contiguously in an edge array of
size |E|. An offset array of size |V | stores the start point of
each vertex v’s neighbors in the edge array. Iterating through
the neighbor list for a vertex v in CSR requires an O(1) lookup
in the vertex array for the start offset, and then O(deg+(v))
steps to traverse the edges in the edge array. Finally, a label
array of size |V | stores the DNA label σ(v) associated with
each vertex v.

E. Shared-memory Analysis Model

We use the work-span model with binary forking [33] to
analyze algorithms in this paper. The work W is the total
number of operations required in a computation (i.e., the time
to run on one core), and the span T∞ is the longest sequence of
serial operations in a computation (i.e., the time on infinitely
many cores). Under binary forking, tasks can fork into two
child tasks, so spawning n tasks takes O(log n) time. That is, a
parallel-for loop with n iterations and O(1) work per iteration
has O(log n) span. The parallelism, or maximum possible
speedup of an algorithm on infinitely many processors, is the
work divided by the span.

To analyze concurrent writes to the same memory location,
we use a CREW shared-memory model, where all processors
can concurrently read and exclusively write to the same
memory location. In the case of multiple concurrent writes
having different values, we pessimistically assume that parallel
write conflicts to the same memory location are resolved
by serializing the operations to that location. The resolution
of values can be done with priority updates [34], which
compare the results of compiler-supported compare-and-swap
operations until the minimum value has gone into the target
memory address.

A parallel algorithm is work-optimal if it performs no more
than a constant factor of operations in total compared to the
best serial algorithm for the problem.

III. ALGORITHM

We begin this section by proving the key result on how
to avoid data dependencies between insertions in sequence-
to-graph alignment using “character graphs,” which facilitate
breaking up a row computation in the DP table into inde-
pendent subproblems. As mentioned in the introduction, the
main challenge to parallelization is dependencies between

insertions in the genome graph. Next, we will show how to use
character graphs for parallelization in ParSGA, and conclude
with theoretical analysis that shows that ParSGA is work-
optimal and has a relatively low span.

A. Insertion parallelization via character graphs

First, we will show that insertion operations are not re-
quired for alignment correctness on edges into vertices that
match the pattern character P [i] when calculating the i-th row
in the DP table. That is, when aligning character P [i], every
edge (u, v) such that σ(v) = P [i] can be ignored.

This observation gives rise to character graphs that are the
same as the original graph but with all the edges corresponding
to a given character removed.

Definition 1. Given a character x ∈ Σ and a genome graph
G = (V,E), the corresponding character graph Gx =
(Vx, Ex) where Vx = V and Ex = {(u, v) ∈ E | σ(v) ̸= x}.

In DNA variation graphs, Σ = {T,C,G,A}, with |Σ|= 4.
Therefore, given an input genome graph G, each nucleotide
has a corresponding character graph GT , GC , GG, or GA as
defined in Definition 1. An example of a variation graph and
its resulting character graphs is presented in Figure 3.

When computing the i-th row of the DP table (corre-
sponding to the pattern character P [i]), ParSGA uses the
corresponding character graph GP [i] as the input graph rather
than the original input graph G and parallelizes over the
connected components in GP [i]. In the context of directed
graphs, connected components are taken to mean weakly
connected components. To enable efficient parallelization, the
character graphs should ideally contain many independent
connected components without data dependencies between

Fig. 3. Input Graph G and Character Graphs GT , GC , GG, GA: When
aligning a character to the input graph, the corresponding character graph
can be used for insertion computations. A character graph omits the input
graph’s edges into vertices labeled with the corresponding character.

Fig. 4. Insertion operations are localized to each of character graph GP [i]’s
connected components. Dotted edges indicate the edges into P [i]-labeled
vertices that are cut to disconnect G into GP [i]’s distinctly colored connected
components.

them. Figure 4 illustrates how ParSGA parallelizes over the
components while calculating insertions serially within each
connected component.

To demonstrate the parallelism resulting from the character-
graph technique, Figure 6 shows that in human genome graphs,
the maximum connected component sizes in character graphs
are several orders of magnitude smaller than the original
graph sizes. Section IV details how we generated the input
datasets. In practice, genome graphs contain a near-linear
graph topology and a well-distributed alphabet over the vertex
labels. As a result, removing the edges for a particular nu-
cleotide to generate a character graph disconnects the original
genome graph into numerous significantly smaller connected
components.

Given the genome graph in Compressed Sparse Row (CSR)
graph representation (defined in Section II), character-graph
construction takes linear time in the number of edges, which
is a small-order term compared to the DP algorithm for
sequence-to-graph alignment. To generate the character graphs
in linear time, we first count character labels that do not match
the pattern character using parallel prefix, and then allocate
and populate the resulting smaller offset and adjacency arrays.

B. Correctness of Character Graph Decomposition

With the objective of constructing character graphs in mind,
we formalize and prove our claim that if a vertex v (in the
genome graph) has the same label σ(v) matching pattern
character P [i] (in the query sequence), then v’s score in the
i-th row of the DP table will not be improved by insertions.
Intuitively, this holds for the following reason: if the insertion
propagation uses some path on the ith stage and traverses an
edge e going into a vertex v with label P [i], then we can
instead use the same path on the (i − 1)th stage up until the
start of e. From there, we use e to obtain the same value on the
ith iteration. This modification will never increase the score
for a given vertex.

Note that ∆match ≤ ∆mismatch,∆del,∆ins in the scoring
function of Recurrence 1. In fact, ∆match is typically 0 as
matching character imposes no edit distance, while all other
quantities are positive numbers. We make no assumption on

Fig. 5. The vertices indicated in the proof of Lemma 1 shown with pre-
insertion A scores and post-insertion C scores on stages i − 1 and i. The
alignment represented on top can be replaced with the alignment represented
on the bottom without increasing the cost.

the topology of G, so our claim also holds true for arbitrary
cyclic graphs.

Formulation and analysis of this claim benefit from addi-
tional notation. Let A[i, v] be the pre-insertion score for P [i]
on vertex v.

A[i, v] = min
u∈N−(v)

{
C[i− 1, v] + ∆del

C[i− 1, u] + ∆i,v

(2)

The array C remains defined as it was in Equation 1, and
can also be referred to as the post-insertion score.

Lemma 1. For all v ∈ V , if σ(v) = P [i], then A[i, v] =
C[i, v], i.e., the ith pre-insertion score for v is equal to the
ith post-insertion score for v,

Proof. If i = 0, then C[0, v] = A[0, v] = 0 for all v ∈ V .
Assume i ≥ 1. By definition A[i, v] ≥ C[i, v]. For the other
side of the inequality, we have that

C[i, v] = A[i, y] + ∆ins · d(y, v)
= C[i− 1, x] + ∆α +∆ins · d(y, v)

for some x, y ∈ V , where ∆α ∈ {∆i,y,∆del}. See Figure
5. Note that x and y need not be distinct. Let us further
assume that d(y, v) ≥ 1 (If d(y, v) = 0, then C[i, v] = A[i, y]
already). Since d(y, v) ≥ 1, we can write

C[i, v] = C[i− 1, x] + ∆α +∆ins · d(y, u) + ∆ins

for some u ∈ N−(v). Note that if d(y, v) = 1, then y = u.

Next, we have

A[i, v] ≤ C[i− 1, u] + ∆match

≤ C[i− 1, x] + ∆ins · d(x, u) + ∆match

≤ C[i− 1, x] + ∆ins +∆ins · d(y, u) + ∆match

≤ C[i− 1, x] + ∆ins +∆ins · d(y, u) + ∆α

= C[i, v].

Lemma 3 allows us to perform insertion propagation in
parallel on subgraphs of G. Note that Lemma 3 can also be
extended to apply to affine gap penalties. Performing insertion
propagation for a single character P [i] in the character graph
GP [i] takes |EP [i]| ≤ |E| work. Taking the sum over the
entire m rows of the DP table, the total work of comput-
ing insertions using the character graphs for each row is
m∑
i=1

|EP [i]|= O(m|E|).

We also define here the maximum component size ccmax =
maxσ∈Σ maxcc∈Gσ

|Ecc|, where cc ∈ Gσ represents a con-
nected component in Gσ , and |Ecc| is the number of edges in
the connected component cc.

C. ParSGA Algorithm

ParSGA, shown in Algorithm 1, parallelizes the dynamic
programming used in past methods by splitting deletion work
over vertices, substitution work over edges, and insertion
work over character-graph components. In preprocessing up
to Line 6, ParSGA constructs GT , GC , GG, GA required for
insertions. In Line 8, ParSGA initializes the first row of the
dynamic programming table per the base case in 1. After
initialization, Line 10 loops over the characters in P . For each
position i in P , the loops at Lines 11, 13, 15 compute the
deletions, substitutions, and insertions from 1. Note that the
deletion and substitution loops at Lines 11 and 13 can be done
in parallel at the same time to compute pre-insertion A scores
before the insertion loop.

The insertion loop at Line 15 makes use of insertion
parallelization over GP [i]. On each connected component in
the character graph GP [i], the serial insertion algorithm [26]
for insertion propagation on arbitrary graphs is applied, as
reproduced in Algorithms 2 and 3. Deletions and substitutions
use G instead of GP [i] at each iteration i.

D. Work and Span Analysis

In the remainder of this section, we will analyze the work
and span (and therefore parallelism) of ParSGA. First, we
show that ParSGA is work-optimal.

Lemma 2. ParSGA is work-optimal with W = O(m|E|).

Proof. Let Wdel, Wsub, and Wins be the work used for
deletion, substitutions, and insertions, respectively. We have
that the total work W = O(Wdel + Wsub + Wins). Noting
that Wdel = O(m|V |), Wsub = O(m|E|), and Wins =
O(m · maxσ∈Σ|Eσ|) = O(m|E|), it follows that W =
O(m|E|).

Algorithm 1: ParSGA
Data: Graph G = (V,E, σ : V 7→ Σ) and pattern

P ∈ Σm

Result: Alignment score array C[m]
1 parallel for σ ∈ Σ do
2 Eσ ← ∅;
3 parallel for (u, v) ∈ E do
4 parallel for σ ∈ Σ \ σ(v) do
5 Eσ ← (u, v);

6 parallel for σ ∈ Σ do
7 Gσ ← (V,Eσ, σ : V 7→ Σ);

8 parallel for v ∈ V do
9 C[0, v]← 0;

10 for i ∈ 1..m do
11 parallel for v ∈ V do
12 C[i, v]← C[i− 1, v] + ∆del;

13 parallel for (u, v) ∈ E do
14 C[i, v]← min{C[i, v], C[i− 1, u] + ∆i,v};
15 parallel for cc ∈ GP [i] do
16 Insert(cc, C[i]);

17 return C[m]

Algorithm 2: Insert
Data: Connected component

cc = (V,E, σ : V 7→ Σ) ⊆ GP [i] and array C[i]
Result: Updated array C[i]

1 for (u, v) ∈ E do
2 Propagate((u, v), C[i])

Next we show that ParSGA has relatively low span. To
this end, we first prove the following lemma bounding the
maximum in-degree by ccmax whenever |Σ|≥ 2 4.

Lemma 3. For |Σ|≥ 2, we have ccmax ≥ maxv∈V deg−(v).

Proof. Let u = argmaxv∈V deg−(v). Observe that for any
α ̸= σ(u), that the edges (w, u) for w ∈ N−(u) are in the
same connected component of Gα. Hence, the component of
Gα containing u has size at least deg−(u).

Next, we apply Lemma 3 to analyze the span of ParSGA.

Lemma 4. ParSGA has span

T∞ = O(m · (log|E|+ccmax)).

Proof. Let T∞del
, T∞sub

, and T∞ins be the span of dele-
tion, substitutions, and insertions, respectively. We have that
the span is their maximum, that is, T∞ = O(T∞del

+
T∞sub

+ T∞ins
). First, T∞del

= O(m · log |V |) because
the time required at each iteration over P to spawn |V |

4The case where |Σ|= 1 can be handled trivially.

Algorithm 3: Propagate
Data: Connected component

cc = (V,E, σ : V 7→ Σ) ⊆ GP [i] and array C[i]
Result: Updated array C[i]

1 if C[i, v] > ∆ins + C[i, u] then
2 C[i, v]← ∆ins + C[i, u];
3 for w ∈ N+(v) do
4 Propagate((v, w), C[i])

threads is O(log |V |) under the binary forking model, as
defined in Section II-E. The other terms are defined sim-
ilarly, but with additional contributors to the longest se-
quential path of operations. For T∞sub

, observe that the
worst case serialization of concurrent writes to the same
location is bounded by the maximum indegree in the G,
hence T∞sub

= O(m · (log |E|+maxv∈V deg−(v))). We
have T∞ins

= O(m · (logmaxσ∈Σ|cc(Gσ)|+ccmax)) as this
sums the cost of parallelizing over the largest number of
connected components over the character graphs plus the cost
of serializing over the maximum connected component size
over the character graphs. Applying that maxv∈V deg−(v) ≤
ccmax from Lemma 3, we conclude that

T∞ = O

(
m · (log |V |+ log |E|+max

v∈V
deg−(v)

+ logmax
σ∈Σ
|cc(Gσ)|+ccmax)

)
= O(m · (log|E|+ccmax)).

As shown in Figure 6 and Table I, in practice, ccmax is or-
ders of magnitude smaller than |E|, so ParSGA achieves good
parallelism and should achieve significant parallel speedup, as
we will confirm in Section IV.

105 106 107 108

102.5

103

Total number of edges

M
ax

im
um

C
C

si
ze

Fig. 6. The relationship between the maximum connected component (CC)
size over the character graphs versus the number of edges on human genome
variation graphs.

IV. EXPERIMENTAL EVALUATION

This section contains an empirical evaluation of the runtime
and parallel scalability of ParSGA using short, long, and ultra-
long reads on multiple genome graphs drawn from different
species.

Graph |V | |E| ccmax

BRCA1 83,268 85,422 196
LRC 1,099,857 1,144,498 738
MHC1 5,138,363 5,318,019 897
E. coli 16,793,055 17,055,833 3,100
CHR21 48,868,640 49,650,499 783
CHR22 52,423,214 53,608,349 991
CHRY 59,433,754 59,495,356 891
CHR19 60,980,865 62,948,541 1,259
CHR20 64,853,076 66,783,153 776
CHR18 80,357,609 82,765,902 1,005
CHR17 83,545,051 86,031,268 974
CHR16 93,072,814 95,962,958 1,361
CHR15 104,968,213 107,547,065 1,630
CHR14 109,347,425 111,460,891 975
CHR13 117,838,149 120,654,511 1,035
CHR12 137,742,382 141,850,415 1,698
CHR11 139,073,853 143,375,375 1,053
CHR10 139,552,787 143,806,599 1,319
CHR9 144,794,207 148,580,237 941
Arabidopsis 133,882,945 151,557,201 1,405
CHR8 150,986,670 155,886,499 1,424
CHRX 158,738,836 162,393,701 1,759
CHR7 163,880,289 168,897,337 1,369
CHR6 176,169,656 181,509,018 897
CHR5 186,204,492 191,791,400 1,937
CHR4 196,912,162 203,000,099 1,800
CHR3 203,882,100 210,066,755 1,677
CHR2 250,312,065 257,829,316 1,234
CHR1 255,754,180 262,621,670 1,031

TABLE I
GENOME GRAPHS USED IN OUR STUDY, ORDERED BY THEIR SIZES, AND

THE MAXIMUM COMPONENT SIZES OF THEIR CORRESPONDING
CHARACTER GRAPHS. BRCA1, LRC, AND MHC1 CORRESPOND TO

SMALLER GRAPHS FROM SPECIFIC REGIONS OF HUMAN CHROMOSOMES.

A. Experimental Setup

We implemented ParSGA in C++ using GCC 10.3.0 and
parallelized using OpenMP 4.5. We enabled compiler flags
-O3 -march=native. We ran experiments on a machine
with dual AMD EPYC 9534 2.45 GHZ CPUs with 128 cores,
3TB DDR5 DRAM, 4TB NVMe, and 100 Gbps InfiniBand
NICs.

Datasets and genome graphs. We constructed variation
graphs for all the human chromosomes using VG toolkit
[16] on reference genomes and variant files from the 1000
Genomes Project (Phase 2) [8]. We also used graphs for
targeted chromosomal regions known to be rich in variants
(BRCA1, LRC, and MHC1), because they were used in many
earlier studies [19], [22], [23]. To extend our tests to other
species, we chose the microbial organism E. Coli and the
model plant Arabidopsis thaliana. We used the graph-loading
component of PaSGAL [19] for reading variation graph toolkit
format [16] files. Table I details the graphs used in this
evaluation.

Connected component analysis. For each genome graph,
the largest connected component size is calculated by first
generating the four corresponding character graphs GT , GG,
GC , GA, and taking the size of the largest component in any
of these graphs. Ambiguous nucleotides, in which the true
characters were unknown, were treated as matches. ParSGA

Cores Total Deletions Substitutions Insertions GCUPS
1 845.08 38.47 482.23 324.38 0.08
2 440.78 19.26 251.10 170.42 0.15
4 226.17 9.71 129.35 87.10 0.28
8 114.72 4.87 65.66 44.10 0.56
16 57.68 2.44 33.02 22.12 1.11
32 29.10 1.22 16.67 11.13 2.20
64 15.29 0.62 8.85 5.75 4.18
128 10.41 0.42 5.99 3.88 6.14

TABLE II
RUNTIME (S) VS CORES ON CHROMOSOME 1 GRAPH WITH READS

OF LENGTH 250.

Cores Total Deletions Substitutions Insertions GCUPS
1 503.84 23.10 288.13 192.61 0.08
2 262.81 11.65 149.93 101.17 0.15
4 134.72 5.83 77.26 51.59 0.28
8 68.30 2.92 39.23 26.11 0.56
16 34.32 1.46 19.72 13.10 1.12
32 17.34 0.74 9.97 6.59 2.21
64 9.12 0.37 5.31 3.41 4.20
128 6.24 0.25 3.61 2.28 6.15

TABLE III
RUNTIME (S) VS CORES ON CHROMOSOME 1 GRAPH WITH READS

OF LENGTH 150.

Cores Total Deletions Substitutions Insertions GCUPS
1 142.47 7.35 81.85 53.27 0.09
2 86.07 3.68 49.19 33.20 0.14
4 43.83 1.86 25.14 16.82 0.28
8 22.21 0.93 12.77 8.48 0.55
16 11.18 0.47 6.44 4.26 1.09
32 5.63 0.23 3.24 2.14 2.17
64 2.88 0.12 1.66 1.09 4.24
128 1.80 0.07 1.04 0.67 6.80

TABLE IV
RUNTIME (S) VS CORES ON CHROMOSOME 21 GRAPH WITH READS

OF LENGTH 250.

Cores Total Deletions Substitutions Insertions GCUPS
1 85.03 4.41 48.81 31.81 0.09
2 51.42 2.23 29.32 19.85 0.14
4 26.16 1.12 14.99 10.04 0.28
8 13.25 0.56 7.61 5.06 0.55
16 6.67 0.28 3.84 2.54 1.10
32 3.36 0.14 1.93 1.28 2.18
64 1.72 0.07 0.99 0.65 4.25
128 1.07 0.04 0.62 0.40 6.82

TABLE V
RUNTIME (S) VS CORES ON CHROMOSOME 21 GRAPH WITH READS

OF LENGTH 150.

uses code from the GAP Benchmark [35] for computing
connected components, and from Parlaylib [36] for parallel
sorting to store connected components contiguously. Note
that the character graphs do not change between iterations
matching successive characters of the pattern, nor do they
change for different patterns. Thus, their construction can
be considered pre-processing cost when the genome graph
remains fixed. On 128 cores, the times spent (in seconds) in
preprocessing to construct the character graphs and label their
components were 23.4 for Chromosome 1, 8.8 for Arabidopsis,
3.1 for Chromosome 21, and 1.3 for E. coli. The file sizes of
the input graphs versus ParSGA’s additional files for character
graphs were 5.1GB vs. 34GB for Chromosome 1, 2.7GB vs.
17.6GB for Arabidopsis, 0.9GB vs. 5.6GB for Chromosome
21, and 0.3GB vs. 2.0GB for E. coli.

The sizes of individual genome graphs, and the correspond-
ing largest connected component sizes (whose distribution is
also illustrated in Figure 6), are shown in Table I. It is readily
observable that for all but the smallest graph BRCA1, the
largest connected component size falls within a tight range
that is uncorrelated to the genome graph size. This size, in
relation to the corresponding genome graph size, determines
the effectiveness and scalability of our insertion parallelization
strategy. In fact, this ratio between |E| and ccmax determines
the degree of parallelism available for insertion. As can be
observed, |E| is three orders of magnitude larger than ccmax

for a graph with a million edges, and five orders of magnitude
larger for large graphs exceeding 100 million edges.

B. Aligning Short Reads

For short reads which tend to have fixed lengths, we
generated 150bp and 250bp simulated reads with Mason2

software [37] to reflect the current state-of-the-art Illumina se-
quencers. To smooth out variations, We report mean alignment
time per read, averaged over aligning five reads.

The run-time of ParSGA and its individual components for
250bp and 150bp reads when aligning to variation graphs for
human Chromosomes 1 and 21, respectively, are shown in
Tables II, III, IV, and V. The tables also contain the breakdown
of the run-time spent in deletion, substitution, and insertion
phases over all the bases (characters) in the read (pattern). The
components parallelize well, and ParSGA achieves a speedup
for 250bp of ∼55× on 64 cores and ∼81× on 128 cores on
Chromosome 1. For Chromosome 21, which is more than five
times smaller, the speedups reduce to ∼49× on 64 cores and
∼79× on 128 cores. Runtime and speedup plots for 250bp
on Chromosome 1, the larger of the two short read lengths
and the largest of the human chromosome graphs, are shown
in Figures 7 and 8. In the legends, deletions, substitutions,
and insertions are abbreviated as “del.”, “subst.”, and “ins.”,
respectively. On this, and also all other datasets, the reduced
speedup achieved when going from 64 to 128 cores is due
to the communication overhead of spanning dual 64-core
CPUs in two sockets, rather than any scaling limitation of
the algorithm itself.

Figure 11 shows that the sizes of the connected components
in character graphs provide a good distribution. As each core
computes over several connected components, their cumulative
sizes and underlying structure can cause load imbalance. The
figure contains plot of such load imbalance, computed as the
ratio of the longest runtime on a core divided by the average
runtime over all cores. The imbalance slowly grows with an
increase in the number of cores, and is a modest 1.12× even
on 128 cores.

1 2 4 8 16 32 64 128

1
4

16
64

256
1024

Number of Cores

Ti
m

e
(s

)

Total Del.
Subst. Ins.

Fig. 7. Runtime (s) vs Cores on CHR1 Graph with Reads of Length 250.

1 2 4 8 16 32 64 128
1
2
4
8

16
32
64

128

Number of Cores

Sp
ee

du
p

Total Del.
Subst. Ins.

Fig. 8. Speedup vs Cores on CHR1 Graph with Reads of Length 250.

1 2 4 8 16 32 64 128

2
8

32
128
512

Number of Cores

Ti
m

e
(s

)

Total Del.
Subst. Ins.

Fig. 9. Runtime (s) vs Cores on Chromosome 1 Graph with Reads of Length
250. Single-core is serial algorithm.

1 2 4 8 16 32 64 128
.25

1
4

16
64

Number of Cores

Sp
ee

du
p

Total Del.
Subst. Ins.

Fig. 10. Speedup vs Cores on Chromosome 1 Graph with Reads of Length
250. Single-core is serial algorithm.

1 2 4 8 16 32 64 128
1

1.05

1.1

Number of Cores

Im
ba

la
nc

e

Del. Subst. Ins.

Fig. 11. Imbalance (Timemax/Timeavg) vs Cores on CHR1 Graph with
Reads of Length 250.

While ParSGA demonstrates good scaling, it is impor-
tant to compare its performance against the serial dynamic-
programming algorithm to measure real speedups achieved
when transitioning from serial code to the parallel code. Fig-
ures 9 and 10 show such a comparison on human Chromosome
1 when aligning 250bp reads. Here, the serial algorithm is used
when running on one core and ParSGA is used in all other
cases. At two cores, ParSGA still (narrowly) underperforms
the serial algorithm, limiting the speedup achieved on 128
cores to ∼ 43×.

Further analysis of the different operations contributing to
the runtime reveals interesting observations (Figures 9 and 10).
Insertions parallelize well compared to the serial algorithm,
providing speedups from the get-go. Both substitutions and
deletions are slower on two cores when compared to the serial
algorithm. Though the parallel runtime of these operations
shows near-perfect scaling, it takes 6 cores for substitutions
and 8 cores for deletions to surpass the runtime of the serial
algorithm. Recall that novel parallelization of insertions is

the main algorithmic contribution in this paper, while both
substitution and deletion phases lend themselves to trivial
parallelization, albeit with the unavoidable overhead. The
overhead in parallel deletion has marginal effect on dragging
overall performance. On the Chromosome 1 graph with 250bp
reads, deletions take up only 4.9 seconds out of a total runtime
of 444.6 seconds required for the serial algorithm, a mere
1.1%. Similar results are observed for all the graphs studied
in Table I.

From a practical standpoint, it makes sense not to parallelize
substitutions and deletions when running on fewer cores, and
instead run the serial algorithm for them in conjunction with
parallel algorithm for the insertion phase. This will further im-
prove run-times and speedups of ParSGA on a smaller number
of cores. However, the exact number of cores at which the
transition of switching from serial execution of substitutions
and deletions to their corresponding parallel execution depends
on architectural features of the system on which the code
is run. This can be measured through diagnostic runs and
ParSGA can be auto-tuned to the underlying architecture to
bring out such savings.

C. Aligning Long Reads

Unlike short-read sequencers, long-read sequencers produce
variable-length reads with much higher error rates. For this
study, we simulated PacBio reads with pbsim2 software [38].
On Chromosome 1, the reads simulated have a mean length
of 16,872.8 bp. On Chromosome 21, the reads simulated have
a mean length of 16,796.6 bp. As before, alignment times are
reported per read, averaged over five reads.

ParSGA aligns long reads to large chromosome-scale vari-
ation graphs in reasonable time. When running on 128 cores,
ParSGA took ∼12 minutes to align a long read to the Chromo-
some 1 variation graph (Table VI), and ∼2 minutes to align a
long read to the Chromosome 21 variation graph (Table VII).
The parallel algorithm is particularly useful in aligning long
sequences, where the serial algorithm takes several hours to
completion. All three operations - substitutions, insertions, and
deletions - scale uniformly well, as shown in Figure 12.

Cores Total Deletions Substitutions Insertions GCUPS
1 60,050.22 2,597.63 34,171.32 23,281.19 0.07
2 31,327.07 1,299.34 17,789.96 12,237.66 0.14
4 16,085.61 655.77 9,179.69 6,250.03 0.27
8 8,139.81 328.37 4,649.38 3,153.20 0.53
16 4,092.18 164.72 2,337.51 1,582.73 1.05
32 2,068.13 82.46 1,184.06 795.16 2.09
64 1,082.98 42.00 626.08 410.73 3.98
128 734.02 27.71 420.26 275.22 5.88

TABLE VI
RUNTIME (S) VS CORES ON CHR1 GRAPH WITH READS OF AVERAGE

LENGTH 16,872.8.

Cores Total Deletions Substitutions Insertions GCUPS
1 10,060.20 494.00 5,759.97 3,806.18 0.08
2 6,117.74 249.34 3,477.70 2,388.57 0.13
4 3,107.21 124.85 1,772.87 1,206.88 0.26
8 1,572.48 62.53 900.10 608.06 0.52
16 791.67 31.38 453.98 304.62 1.04
32 398.82 15.70 228.83 153.01 2.06
64 203.59 7.92 117.35 77.50 4.03
128 126.34 4.88 72.39 47.58 6.50

TABLE VII
RUNTIME (S) VS CORES ON CHROMOSOME 21 GRAPH WITH READS OF

AVERAGE LENGTH 16,796.6.

1 2 4 8 16 32 64 128
1
2
4
8

16
32
64

128

Number of Cores

Sp
ee

du
p

Total
Del.

Subst.
Ins.

Fig. 12. Speedup vs Cores on Chromosome 1 Graph with Reads of Average
Length 16,872.8.

To provide experiments on ultra-long reads, we simulated
1 million bp reads, representative of Oxford Nanopore se-
quencers. When running on 128 cores, ParSGA took 12
hours, measuring at 5.92 GCUPS, to align one read to the
Chromosome 1 graph, and 2hrs. and 12 mins., measuring at
6.15 GCUPS, to align one read to the Chromosome 21 graph.

An important observation to make is that the runtime of
ParSGA increases linearly with an increase in pattern size. The
parallelization is on a per-character basis, and thus its scaling

is unaffected by the length of the sequence being aligned. For
this reason, the GCUPS metric is similar for Chromosome 1
across four different read lengths when examining Tables VI,
II, III, and its ultra-long read runtime, and for Chromosome 21
across four different read lengths when examining Tables VII,
IV, V, and its ultra-long read runtime.

No implementations were available for a direct comparison
on ParSGA’s intended use case, the parallel optimal alignment
of long reads to graphs. For this purpose, we ran the batch-
parallel optimal sequence-to-graph aligner PaSGAL [19] on
Chromosome 21 on PacBio reads on 128 cores. PaSGAL
took 1hr. 30 mins. per read, compared to ParSGA taking 2
mins. PaSGAL solves local alignment, a recurrence with iden-
tical time complexity as our semiglobal alignment recurrence
(Equation 1), so ParSGA’s 55× speedup over PaSGAL is in
line with ParSGA’s 43× speedup over our own serial code.

D. Evaluation on Variantion Graphs for Other Species

Most sequence-to-graph alignment works only target human
genetic variation data [15]–[18], which by itself makes a com-
pelling use case. Though the experimental analysis presented
so far is also similarly focused, here we present additional
results to illustrate the effectiveness of ParSGA for variation
graphs from other species. For this purpose, we chose the
widely studied microbial organism E. Coli and the model plant
Arabidopsis thaliana. We used the E. coli genome graph from
Garrison et. al. [39]. We constructed an Arabidopsis variation
graph using data from the Ensembl Genomes resource [40].
The respective maximum connected component sizes of the
character graphs derived from them are included in Table I,
alongside the human chromosome graphs.

Table VIII and Figure 13 show short read runtimes and
speedups on the E. Coli and Arabidopsis genome graphs,
compared with human Chromosome 1 and 21 graphs. ParSGA
performs equally well, achieving maximum speedups of 81×,
81×, 79×, and 88× on Chromosome 1, Arabidopsis, Chro-
mosome 21, and E. coli, respectively. Compared to the serial
algorithm on the same read data, ParSGA achieved simi-
lar maximum speedups of 43×, 45×, 40×, and 46× on
Chromosome 1, Arabidopsis, Chromosome 21, and E. coli,
respectively. Experimental data for long reads on E. Coli and
Arabidopsis are shown in Tables IX and X. As indicated by
their lower maximum GCUPS metrics of 4.95 and 5.40, both
E. coli and Arabidopsis require longer runtimes for alignment
relative to their graph sizes than human Chromosome 1 and 21,
which have maximum GCUPS of 5.88 and 6.50 respectively.
This is likely due to the graph structures present in the
variations of such species.

V. RELATED WORK

To date, practical work on parallelizing algorithms for
sequence-to-graph alignment focused on parallelizing multiple
reads simultaneously. For example, the PaSGAL algorithm
[19] uses Single Instruction Multiple Data (SIMD) operations
and inter-task parallelism across reads to accelerate sequence-
to-graph alignment on directed acyclic graphs (DAGs). Addi-

1 2 4 8 16 32 64 128
1
2
4
8

16
32
64

128

Number of Cores

Sp
ee

du
p

CHR1 Arabidopsis
CHR21 E. coli

Fig. 13. Speedup vs Cores by Variation Graphs with Reads of Length 250.

tional research effort has been devoted to parallelizing multiple
reads using SIMD operations, again for multiple reads [15].
Another prior work focused on parallelizing alignment of
multiple reads for a GPU-based architecture [22].

On the theoretical side, researchers proposed an algorithm
for the exact matching problem that takes poly-logarithmic
time but O(|V |3m) work [41]. The algorithm uses prefix-
sum techniques on the matrix multiplications of the transition

Cores CHR1 Arabidopsis CHR21 E. coli
|E| 2.6× 108 1.5× 108 5.0× 107 1.7× 107

1 845.08 542.17 142.47 62.02
2 440.78 273.61 86.07 31.45
4 226.17 141.26 43.83 15.90
8 114.72 71.75 22.21 8.44
16 57.68 36.23 11.18 4.15
32 29.10 18.27 5.63 2.17
64 15.29 9.48 2.88 1.13
128 10.41 6.68 1.80 0.70

TABLE VIII
RUNTIME (S) VS CORES FOR DIFFERENT VARIATION GRAPHS WITH

READS OF LENGTH 250.

Cores Total Deletions Substitutions Insertions GCUPS
1 4731.88 182.21 2592.45 1957.18 0.06
2 2406.07 91.13 1311.11 1003.77 0.13
4 1268.36 46.08 664.33 557.75 0.24
8 638.62 23.21 332.57 282.12 0.47
16 317.52 11.87 168.06 137.15 0.95
32 162.16 6.06 86.09 69.70 1.87
64 85.35 3.12 44.39 37.60 3.54
128 56.02 1.92 27.34 26.12 5.40

TABLE IX
RUNTIME (S) VS CORES ON E. COLI GRAPH WITH READS OF AVERAGE

LENGTH 18,011.0

Cores Total Deletions Substitutions Insertions GCUPS
1 37,698.51 1,334.15 22,326.27 14,038.03 0.06
2 19,027.33 667.27 11,298.57 7,061.42 0.12
4 9,805.64 336.72 5,880.54 3,588.12 0.23
8 4,984.52 168.51 3,001.12 1,810.34 0.45
16 2,511.92 84.34 1,515.36 908.57 0.88
32 1,266.40 42.18 763.52 457.45 1.75
64 654.63 21.55 398.51 232.47 3.39
128 448.57 14.81 273.62 154.28 4.95

TABLE X
RUNTIME (S) VS CORES ON ARABIDOPSIS GRAPH WITH READS OF

AVERAGE LENGTH 16,569.6.

1 2 4 8 16 32 64 128
1
2
4
8

16
32
64

128

Number of Cores

Sp
ee

du
p

Total
Del.

Subst.
Ins.

Fig. 14. Speedup vs Cores on E. Coli Graph with Reads of Average Length
18,011.0.

1 2 4 8 16 32 64 128
1
2
4
8

16
32
64

128

Number of Cores

Sp
ee

du
p

Total
Del.

Subst.
Ins.

Fig. 15. Speedup vs Cores on Arabidopsis Graph with Reads of Average
Length 16,569.6.

matrices, which correspond to the different symbols in the
given sequence. However, this algorithm is not work-optimal
because the DP solution takes O(|E|m) time.

VI. CONCLUSIONS

We presented ParSGA, the first parallel algorithm and its
multicore implementation for sequence alignment to a genome
graph. ParSGA relies on a novel parallelization of insertion
propagation, which works by breaking the genome graph into
numerous significantly smaller components with the crucial
property that an insertion could not propagate from one
component to another. ParSGA outputs optimal alignments
using high-end multiprocessors in several minutes for long
reads, and is the only viable option for aligning ultra-long
Oxford Nanopore reads measuring 1 Mbp and up.

Besides long reads, ParSGA is useful for dynamically
evolving graphs. In this scenario, a read is first mapped to
the current graph to determine its mapping location, following
which the variants present in the read are incorporated into the
graph before aligning the next read. Algorithms that require
multiple reads to align at once are rendered useless in this
scenario.

ParSGA’s intra-task parallelization could be used in com-
bination with existing inter-task parallelization methods to
further increase the number of processors that can be utilized
for aligning large sequence datasets against genome-scale
graphs. As alignment capabilities scale with complex, rapidly
growing datasets, graphical pangenomics will better be able
to support further advances in biological research.

REFERENCES

[1] A. Dilthey, C. Cox, Z. Iqbal, M. R. Nelson, and G. McVean, “Improved
genome inference in the mhc using a population reference graph,” Nature
genetics, vol. 47, no. 6, pp. 682–688, 2015.

[2] J. M. Eizenga, A. M. Novak, J. A. Sibbesen, S. Heumos, A. Ghaffaari,
G. Hickey, X. Chang, J. D. Seaman, R. Rounthwaite, J. Ebler et al.,
“Pangenome graphs,” Annual review of genomics and human genetics,
vol. 21, pp. 139–162, 2020.

[3] B. Paten, A. M. Novak, J. M. Eizenga, and E. Garrison, “Genome graphs
and the evolution of genome inference,” Genome research, vol. 27, no. 5,
pp. 665–676, 2017.

[4] S. Chen, P. Krusche, E. Dolzhenko, R. M. Sherman, R. Petrovski,
F. Schlesinger, M. Kirsche, D. R. Bentley, M. C. Schatz, F. J. Sedlazeck
et al., “Paragraph: a graph-based structural variant genotyper for short-
read sequence data,” Genome biology, vol. 20, no. 1, pp. 1–13, 2019.

[5] H. P. Eggertsson, S. Kristmundsdottir, D. Beyter, H. Jonsson, A. Sku-
ladottir, M. T. Hardarson, D. F. Gudbjartsson, K. Stefansson, B. V.
Halldorsson, and P. Melsted, “Graphtyper2 enables population-scale
genotyping of structural variation using pangenome graphs,” Nature
communications, vol. 10, no. 1, pp. 1–8, 2019.

[6] G. Hickey, D. Heller, J. Monlong, J. A. Sibbesen, J. Sirén, J. Eizenga,
E. T. Dawson, E. Garrison, A. M. Novak, and B. Paten, “Genotyping
structural variants in pangenome graphs using the vg toolkit,” Genome
biology, vol. 21, no. 1, pp. 1–17, 2020.

[7] “Pangaia,” Nov 2020. [Online]. Available: https://www.pangenome.eu/
[8] . G. P. Consortium et al., “A global reference for human genetic

variation,” Nature, vol. 526, no. 7571, pp. 68–74, 2015.
[9] D. Gibney, G. Hoppenworth, and S. V. Thankachan, “Simple reductions

from formula-sat to pattern matching on labeled graphs and subtree
isomorphism,” in 4th Symposium on Simplicity in Algorithms, SOSA
2021, Virtual Conference, January 11-12, 2021, H. V. Le and
V. King, Eds. SIAM, 2021, pp. 232–242. [Online]. Available:
https://doi.org/10.1137/1.9781611976496.26

[10] P. E. Compeau, P. A. Pevzner, and G. Tesler, “How to apply de bruijn
graphs to genome assembly,” Nature biotechnology, vol. 29, no. 11, pp.
987–991, 2011.

[11] S. Garg, M. Rautiainen, A. M. Novak, E. Garrison, R. Durbin, and
T. Marschall, “A graph-based approach to diploid genome assembly,”
Bioinform., vol. 34, no. 13, pp. i105–i114, 2018. [Online]. Available:
https://doi.org/10.1093/bioinformatics/bty279

[12] A. Amir, M. Lewenstein, and N. Lewenstein, “Pattern matching in
hypertext,” J. Algorithms, vol. 35, no. 1, pp. 82–99, 2000. [Online].
Available: https://doi.org/10.1006/jagm.1999.1063

[13] M. Equi, R. Grossi, V. Mäkinen, A. Tomescu et al., “On the complexity
of string matching for graphs,” in 46th International Colloquium on
Automata, Languages, and Programming (ICALP 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[14] C. Jain, H. Zhang, Y. Gao, and S. Aluru, “On the complexity of
sequence-to-graph alignment,” J. Comput. Biol., vol. 27, no. 4, pp. 640–
654, 2020. [Online]. Available: https://doi.org/10.1089/cmb.2019.0066

[15] C. A. Darby, R. Gaddipati, M. C. Schatz, and B. Langmead, “Vargas:
heuristic-free alignment for assessing linear and graph read aligners,”
Bioinformatics, vol. 36, no. 12, pp. 3712–3718, 2020.

[16] E. Garrison, J. Sirén, A. M. Novak, G. Hickey, J. M. Eizenga, E. T.
Dawson, W. Jones, S. Garg, C. Markello, M. F. Lin et al., “Variation
graph toolkit improves read mapping by representing genetic variation
in the reference,” Nature biotechnology, vol. 36, no. 9, pp. 875–879,
2018.

[17] D. Kim, J. M. Paggi, C. Park, C. Bennett, and S. L. Salzberg,
“Graph-based genome alignment and genotyping with hisat2 and hisat-
genotype,” Nature biotechnology, vol. 37, no. 8, pp. 907–915, 2019.

[18] P. Ivanov, B. Bichsel, and M. Vechev, “Fast and optimal sequence-to-
graph alignment guided by seeds,” bioRxiv, 2021.

[19] C. Jain, S. Misra, H. Zhang, A. Dilthey, and S. Aluru, “Accelerating
sequence alignment to graphs,” in 2019 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 2019, pp. 451–461.

[20] M. Rautiainen and T. Marschall, “Graphaligner: rapid and versatile
sequence-to-graph alignment,” Genome biology, vol. 21, no. 1, pp. 1–28,
2020.

[21] H. Li, X. Feng, and C. Chu, “The design and construction of reference
pangenome graphs with minigraph,” Genome biology, vol. 21, no. 1, pp.
1–19, 2020.

[22] Z. Feng and Q. Luo, “Accelerating sequence-to-graph alignment on
heterogeneous processors,” in 50th International Conference on Parallel
Processing, 2021, pp. 1–10.

[23] J. Ma, M. Cáceres, L. Salmela, V. Mäkinen, and A. I. Tomescu,
“Chaining for accurate alignment of erroneous long reads to acyclic
variation graphs,” Bioinformatics, vol. 39, no. 8, p. btad460, 2023.

[24] G. Chandra and C. Jain, “Sequence to graph alignment using gap-
sensitive co-linear chaining,” in International Conference on Research
in Computational Molecular Biology. Springer, 2023, pp. 58–73.

[25] M. Rautiainen, V. Mäkinen, and T. Marschall, “Bit-parallel sequence-
to-graph alignment,” Bioinformatics, vol. 35, no. 19, pp. 3599–3607,
2019.

[26] G. Navarro, “Improved approximate pattern matching on hypertext,”
Theor. Comput. Sci., vol. 237, no. 1-2, pp. 455–463, 2000. [Online].
Available: https://doi.org/10.1016/S0304-3975(99)00333-3

[27] OpenMP Architecture Review Board, “OpenMP application program
interface version 4.5,” May 2008. [Online]. Available: https://www.
openmp.org/wp-content/uploads/openmp-4.5.pdf

[28] A. Amir, M. Lewenstein, and N. Lewenstein, “Pattern matching in
hypertext,” Journal of Algorithms, vol. 35, no. 1, pp. 82–99, 2000.

[29] D. Gibney, S. V. Thankachan, and S. Aluru, “The complexity
of approximate pattern matching on de bruijn graphs,” (Accepted)
RECOMB2022, vol. abs/2201.12454, 2022. [Online]. Available: https:
//arxiv.org/abs/2201.12454

[30] D. Gibney, G. Hoppenworth, and S. V. Thankachan, “Simple reductions
from formula-sat to pattern matching on labeled graphs and subtree iso-
morphism,” in Symposium on Simplicity in Algorithms (SOSA). SIAM,
2021, pp. 232–242.

[31] M. Equi, V. Mäkinen, and A. I. Tomescu, “Graphs cannot be indexed
in polynomial time for sub-quadratic time string matching, unless seth
fails,” in International Conference on Current Trends in Theory and
Practice of Informatics. Springer, 2021, pp. 608–622.

[32] W. F. Tinney and J. W. Walker, “Direct solutions of sparse network
equations by optimally ordered triangular factorization,” Proceedings of
the IEEE, vol. 55, no. 11, pp. 1801–1809, 1967.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. MIT Press, 2009.

[34] J. Shun, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons, “Reducing
contention through priority updates,” in Proceedings of the twenty-fifth
annual ACM symposium on Parallelism in algorithms and architectures,
2013, pp. 152–163.

[35] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[36] G. E. Blelloch, D. Anderson, and L. Dhulipala, “Parlaylib-a toolkit for
parallel algorithms on shared-memory multicore machines,” in Proceed-
ings of the 32nd ACM Symposium on Parallelism in Algorithms and
Architectures, 2020, pp. 507–509.

[37] M. Holtgrewe, “Mason–a read simulator for second generation sequenc-
ing data,” Technical Report FU Berlin, 2010.

[38] Y. Ono, K. Asai, and M. Hamada, “Pbsim2: a simulator for long-
read sequencers with a novel generative model of quality scores,”
Bioinformatics, vol. 37, no. 5, pp. 589–595, 2021.

[39] E. Garrison, A. Guarracino, S. Heumos, F. Villani, Z. Bao, L. Tattini,
J. Hagmann, S. Vorbrugg, S. Marco-Sola, C. Kubica et al., “Building
pangenome graphs,” Nature Methods, pp. 1–5, 2024.

[40] A. D. Yates, J. Allen, R. M. Amode, A. G. Azov, M. Barba, A. Becerra,
J. Bhai, L. I. Campbell, M. Carbajo Martinez, M. Chakiachvili et al.,
“Ensembl genomes 2022: an expanding genome resource for non-
vertebrates,” Nucleic acids research, vol. 50, no. D1, pp. D996–D1003,
2022.

[41] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,”
J. ACM, vol. 27, no. 4, pp. 831–838, 1980. [Online]. Available:
https://doi.org/10.1145/322217.322232

https://www.pangenome.eu/
https://doi.org/10.1137/1.9781611976496.26
https://doi.org/10.1093/bioinformatics/bty279
https://doi.org/10.1006/jagm.1999.1063
https://doi.org/10.1089/cmb.2019.0066
https://doi.org/10.1016/S0304-3975(99)00333-3
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://arxiv.org/abs/2201.12454
https://arxiv.org/abs/2201.12454
https://doi.org/10.1145/322217.322232

	Introduction
	Preliminaries
	Notation
	Sequence-to-graph Alignment
	Dynamic-Programming Approach
	Compressed Sparse Row (CSR) Representation
	Shared-memory Analysis Model

	Algorithm
	Insertion parallelization via character graphs
	Correctness of Character Graph Decomposition
	ParSGA Algorithm
	Work and Span Analysis

	Experimental Evaluation
	Experimental Setup
	Aligning Short Reads
	Aligning Long Reads
	Evaluation on Variantion Graphs for Other Species

	Related Work
	Conclusions
	References

